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The quantum one-time pad and superactivation
Fernando G.S.L. Brandão and Jonathan Oppenheim

I. M AIN CONTRIBUTIONS IN A NUTSHELL

Before we turn to a more detailed exposition of our contri-
butions, we outline the main results from [1], [2] below.

• We solve thequantum one-time pad in the presence of
an eavesdropper. We find, in surprising analogy with
the classical case, that the rateQ that Alice can send
encrypted quantum states to Bob using the stateψAB
with purification |ψ〉ABE (with the E system held by the
eavesdropper) is

Q(ψABE) = sup
A→aα

1

2
(I(a : B|α) − I(a : E|α)), (1)

with the conditional mutual informationI(a : B|α) :=
S(aα) + S(Bα) − S(aBα) − S(α) and the supremum
taken over channels which mapsψA to ρaα. This is the
quantum analog of the famous Csiszar & Korner quantity
[4], [6] from classical information theory. It gives the rate
at which we can perform privacy amplification and error
correction on a quantum state using an insecure quantum
channel.

• The optimal rate given in Eq. (1) isadditive and single-
letter, something extremely rare in quantum information
theory, where regularisation over infinitely many uses of
the channel/state is almost always required (to our knowl-
edge the only other example is entanglement-assisted
classical capacity of a quantum channel).

• In the optimal protocol for the quantum one-time pad we
find that the insecure channel is only used to simulate
a symmetric-side channel [3], a channel which maps the
quantum information symmetrically to the receiver and
the environment. Moreover the optimal rate formula Eq.
(1) turns out to be equal to the distillable entanglement
assisted by symmetric-side channel [3]. This had been
introduced before as a calculational tool and was instru-
mental in proving superactivation of the quantum channel
capacity [5]. Our work gives anoperational interpretation
to this quantity.

• We find the symmetric-side channel to be the quantum
analogue ofpublic communication, in the sense that
both in the classical and in the quantum case of privacy
amplification and error correction, public communication
makes the theory simple and elegant, with the classical
and quantum optimal rates having remarkable similar-
ities. Conversely, in both classical and quantum cases
the theory becomes much more complicated if public
communication is not available.

• Smith and Yard’s example of superactivation of the
quantum capacity [5] were constructed by showing that
the symmetric-side channel assisted capacity is at least
half the private capacity of the channel. This suggested a
connection of privacy and distillable entanglement under

public quantum communication. We show that such a
relation indeed holds, in a relaxed sense: we prove that
when assisted by a symmetric-side channel, the distillable
entanglement becomes equal to two recent fully quantum
notions of privacy, the mutual independence rate [7] and
its weak variant [2], defined as the maximal mutual infor-
mation attainable by Alice and Bob which is inaccessible
to the environment. Thus we can understand the role of
the symmetric-side channel in superactivation as making
the conversion of private but noisy correlation, in the
form of mutual independence, into private and perfect
correlations, in the form of EPR pairs.

In conclusion, insights from cryptography are invaluable
in gaining a further understanding of quantum information
theory, in a number of ways. In fact, the similarity between
entanglement and private correlations was used in constructing
the first entanglement distillation protocols, and has beenused
to conjecture new types of classical distributions. However, the
insight had previously been that from an informational per-
spective, quantum states were like private distributions while
classical communication acted like public communication.
However, we now see that the more accurate analogue is that
instead of a classical channel, we should consider the quantum
public channel. As soon as we do so, we recover a capacity
formula which is equivalent to its classical counterpart, and
which, remarkably is additive and single-letter. What is more,
the capacity of the one-time pad is equal to the superactivation
rate of the symmetric side channel, which had previously been
a surprising phenomena, but in this context has a natural expla-
nation. We thus see that as soon as we introduce the notion of
quantum public communication, quantum information theory
becomes far more tractable and closer to the classical theory.
We believe that this is such a natural setting, that it will enable
us to better understand other previously intractable aspects of
information carried by quantum systems.

II. BACKGROUND

Suppose two trusted parties, Alice and Bob, and a malicious
third party, Eve, share noisy classical correlations givenby a
joint probability distributionPXY Z and Alice and Bob would
like to extract key from their common randomness. A key
resource in this paradigm ispublic communication, which is
conveniently represented by a symmetric broadcast channel
which delivers the same information to Bob and Eve

In the one-way public communication scenario, only Alice
is able to send public messages to Bob and Eve. In this case
the distillable secret-key rate of the distributionPXY Z (when
the parties are given infinitely many independent realizations
of it) is given by the celebrated formula [6], [4], [9]

C(PXY Z) = sup
X→V→U

I(V : Y |U) − I(V : Z|U), (2)
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with the conditional mutual informationI(V : Y |U) :=
H(V U)+H(Y U)− H(V Y U)−H(U), the Shannon entropy
H(X) := −

∑
x PX=x logPX=x, and the supremum taken

over the Markov chainX → V → U .
The formula in Eq. (2) is so-calledsingle-letter, meaning

that an optimization over a single copy of the probability
distribution gives the asymptotic rate. Moreover it isadditive,
i.e. for two probability distributionsPXY Z and QX′Y ′Z′ ,
C(PXY Z⊗QX′Y ′Z′) = C(PXY Z)+C(QX′Y ′Z′) [6]. We can
then say that Eq. (2) completely characterizes how to optimally
distill secret-key in the one-way scenario.

In quantum information theory, the paradigm described
above has two natural analogues, and both have been ex-
tensively analysed [10], [11], [12]. The first is to distill a
secret-key from a tripartite quantum state|ψABE〉 shared by
Alice, Bob and Eve [12]. Alice and Bob can perform any
operation allowed by quantum mechanics on their shares of
the state, while (in the one-way setting considered here) Alice
can communicate publicclassical messages to Bob and Eve.
The second is entanglement distillation [10], in which Alice
and Bob wish to distill Einstein-Podolsky-Rosen (EPR) pairs
from a shared stateψAB by local quantum operations and,
again,classical communication from Alice to Bob (here too,
although not needed, one can consider that an eavesdropper
has a purification ofψAB i.e. a pure stateψABE such that
ψAB = trEψAB , and Eve learns all the classical communica-
tion that Alice sends to Bob).

In both paradigms, the shared randomness is extended from
the original classical probability distribution to a quantum
state. The public communication, however, remains the same;
even in the quantum case only classical messages can be
publicly communicated. A natural question then emerges: is
there a meaningful notion ofpublic quantum communication?

III. T HE QUANTUM ONE-TIME PAD IN THE PRESENCE OF

AN EAVESDROPPER

We consider now the quantumone-time pad problem [1]
in the presence of an eavesdropper. The setting is as follows:
Alice would like to send to Bob secret classical or quantum
messages, using an ideal, but insecure, quantum channel which
might be intercepted by an eavesdropper, who should not be
able to learn anything about the message being sent.

Alice and Bob can make use of the insecure channel for
secure communication if they share in addition asecret-key.
Then using their secret correlations Alice can encode the
message in a way that (i) Bob can decode it in the case that Eve
does not intercept the states sent down the insecure quantum
channel and (ii) Eve cannot distinguish the different messages
if she intercepts the sent states. The raw key may initially be
noisy and correlated with an eavesdropper – i.e. we assume
that the raw key is given by (several copies of) a quantum
state|ψABE〉 shared by Alice, Bob and Eve and the question
is to find out what is the optimal rate at which the state can
be used to encrypt classical or quantum messages.

This problem was first considered in the noiseless case,
in which Alice and Bob share perfect classical key or EPR
pairs [15], [16], [17]. In Ref. [18], in turn, Schumacher and

Westmoreland analysed the case in which Alice and Bob
shared a mixed bipartite quantum stateψAB , which is not
correlated with the eavesdropper. Interestingly, they found the
optimal rate at which the state can be used as a one-time-
pad for classical messages to be given by the quantum mutual
information ofψAB : I(A : B)ψ = S(A)ψ+S(B)ψ−S(AB)ψ.

In [1] we considered the general case, in which Alice and
Bob have an arbitrary quantum state, in general correlated with
Eve. We found that the optimal rate at which the state can be
used as a one-time-pad for quantum information turns out to be
given by the single-letter, additive expression of Eq. (1) This
expression is formally equivalent to the classical expression
given by Eq. (2).

A. Symmetric-side Channels

The rate given by Eq. (1) has appeared in the literature
before – as the quantum capacity assisted by symmetric side-
channels [3].

Dss(ψAB) = sup
A→aα

1

2
(I(a : B|α) − I(a : E|α)), (3)

with the supremum taken over all channels which mapsA
to aα. It is intriguing that it is the symmetric-side channel
assisted distillable entanglement that appears as the optimal
rate in our setting, even though the problem makes no mention
in any way of the symmetric-side channel.

The proof of our result reveals an interesting aspect of
this task: the insecure quantum channel is only ever used to
simulate a symmetric-side channel, meaning that in the optimal
protocol Alice first locally simulates a symmetric-side channel,
sends through the insecure channel the part of the symmetric-
side channel’s output which would go to Bob, and traces out
the part that would go to Eve. It thus follows that there is no
difference if Alice and Bob are connected by an insecure ideal
channel or a symmetric-side channel!

We can therefore consider the quantum one-time-pad as
an operational setting where the idea of a symmetric-side
channel as public quantum communication naturally appears.
In the same way a broadcast channel (which sends the same
information to the two receivers) is employed as a model
of a classical public communication channel, the quantum
symmetric-side channel appears to be a model of quantum
public communication.

Symmetric-side channels were introduced by Smith, Smolin
and Winter [3] with the goal of obtaining a more tractable
upper bound on the quantum capacity of quantum channels.
They analysed how assistance by a symmetric-side channel
could improve the quantum channel capacity and the (one-
way) distillable entanglement. Here we see that assistanceby
symmetric side-channels is far more than a tool for computing
upper-bounds on the capacity.

IV. SUPERACTIVATION OF THECHANNEL CAPACITY

There is another line of investigation in which symmetric-
side channels have been shown very useful: in exhibiting
examples of non-additivity of the quantum channel capacity
[5]. By the no-cloning theorem [13], [14], the symmetric-side
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channel can be seen to have zero quantum capacity. However,
in [5] Smith and Yard noted that a consequence of Eq. (3) and
the formula of [11] for the one-way distillable secret-key rate
(K→) is

Dss(ψAB) ≥ K→(ψAB)/2, (4)

for all bipartite statesψAB . The equation above is striking
because there are examples of states for which the distillable
entanglement is zero, but the distillable secret-key is not[19],
[20], [12]. In this way we find an example of two quantum
channels each with zero quantum capacity, but whose tensor
product has positive quantum capacity. This effect has been
termed thesuperactivation of the quantum capacity.

Equation (4) shows a curious property of the symmetric-
side channel: it allows the conversion of secret-key into EPR
pairs (at half the rate). An interesting question, raised already
in [5] and further explored in [21], [22], [23], asks whether
there is a more fundamental relation between entanglement
and secrecy in the presence of symmetric-side channels. For
instance, might the distillable entanglement and distillable
secret-key, when assisted by symmetric-side channels, become
the same? Although it is rather unlikely that this is the case
it turns out that a relaxed version of the statementis true.

In order to formalize this result, we consider a recently
introduced version of quantum privacy. The usual definition
of secret-key consists of two requirements: (i) Alice and
Bob systems should be classical, and perfectly correlated and
(ii) their state should not be correlated in any way with
the eavesdropper. A relaxed and fully quantum definition of
private correlations has been introduced [7], in which onlythe
second requirement is kept. Then given a bipartite quantum
stateψAB , the degree of (potentially noisy) private correlations
of Alice and Bob, termedmutual independence (Iind(ψAB)),
is given by (half) the mutual information of a state extracted
by Alice and Bob which is product with Eve’s state, who is
assumed to hold a purifying state forψAB .

In [2] we introduced an even more relaxed notion of private
correlations, which we callweak mutual independence. Its def-
inition is almost the same as that of mutual independence, but
here we only require that Alice’s state is completely decoupled
from Eve’s. In the setting where no classical communication
is allowed, the optimal protocol is just for Alice to split her
system in two and trace out one of them, making herself
product with Eve and at the same time trying to retain as
much mutual information as possible with Bob. We can then
see this quantity as a measure of Alice’s ability to perform
quantum privacy amplification against the eavesdropper.

Armed with these definitions we can state our main result
concerning activation of the channel capacity and distillable
entanglement: When assisted by a symmetric-side channel,
the weak mutual independence rate(Wind,ss), the mutual
independence rate (Iind,ss), and the distillable entanglement
(Dss) become the same, i.e. for every stateψAB

Wind,ss(ψAB) = Iind,ss(ψAB) = Dss(ψAB). (5)

The introduction of the symmetric side-channel makes the
theory far more elegant. We note that an analogous equation
holds true classically, if we replace distillable entanglement

by distillable secret-key and redefine the two mutual indepen-
dence rates removing the half factor presented in the quantum
case and using the correspondence quantum/classical public
communication.

Eq. (5) also shows that when looking for more superacti-
vation protocols with the symmetric-side channel, it suffices
to focus on the rather indiscriminate task of making part of
Alice’s state product with the environment.
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