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What is uncertainty?

0
Measurement p(blt)
t=1)
1 Probability of obtaining
W outcome bit b

when performing
measurement t

“Cannot know both the particle’s position and its momentum
at the same time” observed by Werner Heisenberg in 1927.




What is uncertainty?

0
Measurement p(bIt)
t =1)
1 Probability of obtaining
W/ outcome bit b

when performing
Certainty: measurement t

We know the property to be determined perfectly.

For some outcome } (here h = () ) we have p(b|t) = 1

“Cannot know both the particle’s position and its momentum
at the same time” observed by Werner Heisenberg in 1927.




What is uncertainty?
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Uncertainty:
We do not know the property to be determined perfectly.
(0<p<1)

“Cannot know both the particle’s position and its momentum
at the same time” observed by Werner Heisenberg in 1927.




Uncertainty relations
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“Cannot know both the particle’s position and its momentum
at the same time” observed by Werner Heisenberg in 1927.
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“Cannot know both the particle’s position and its momentum
at the same time” observed by Werner Heisenberg in 1927.
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“Cannot know both the particle’s position and its momentum
at the same time” observed by Werner Heisenberg in 1927.




Measurement

t=10

Measurement

t=1

Suppose that for any quantum state:

1, o
E:ﬁmnﬁ =0)+p0jt=1))<c
1, o

5 (POt =0) +p(1t=1)) < c

1 o
2 (p(lt=0)+p(0lt=1)) < ¢

—

(p(Lt =0)+p(llt =1)) < ¢

!

§

p(b]t)

1 Probability of obtaining
outcome bit b

when performing
measurement t

Fine-grained uncertainty relation:

Imagine c< 1.

Cannot have
plOjt=0)=p(lit=1)=1

Cannot know both properties!



g A change of perspective

Measurem

Probability of retrieving Uncertainty relation: “Cannot know both
the first bit bits at the same time”.

Measuremerrc

t=1)
1
0
Measurement
=1
1

Encodes information
in properties
zo, 11 € 0,1} Measurement to learn bit 1



g Encoding and decoding information

0)
Measurement p(b|t)
t=10
(Retrieve ) 1  Probability of obtaining
outcome bit b
0)
Measurement when performing
t=1 measurement t

(Retrieve ) 1

Suppose that for any quantum state:

Coding interpretation:
(plO|t = 0y 4 Jr,.:|'}|,- — 1)< ¢

f Choose to retrieve xor x; with probability 7
Euﬂﬁlf —0) + p(1)t = 1)) <
1

Average probability we correctly retrieve the
Sp(lt=0)+p0ft=1)) <c

desired bit from xyx7 = (0,0) for any encoding
o . using those measurements.
p(lt=0)+p(llt=1))<¢

—

!
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Maximally certain states

Suppose that for any quantum state:

1. . .
S (POt =0) + p(0ft =1)) < ¢
1 .
5 (POt =0) +p(1t=1)) < c

1, |
SPAt=0)+pOt=1)) < ¢

! ||

(p(lt=0)+p(llt=1)) < ¢
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Maximally certain states

For the maximally certain states

% (p(0]t = 0) + p(0|t = 1))=c > P Encoding of = = xgx; = (0,0)
1 B T P0.1 - R —
5 (p(Ojt =0)+ p(llt =1))=¢ <€ Encoding of = = xgxr; = (0,1)
1 1.0 - N
2 (p(llt =0)+ p0t =1))=¢ < Encoding of = = xyx; = (1,0)
1 ,
5 (p(1)t =0)+p(llt =1))=c . 21,1 Encoding of = = xyx; = (1,1)
An example:
Measurements in Zand X basis P10 £0.0
1 . 1 1
—tr [p (|030] + [+){+])] < =+ —=
St 1P (00 + 1) (+)] < 5 + - | \
1 oY 1)(1] > [0)(0)
—tr [p (|0}0] + |} {—|)| < =+ —=
St 1P (001 + 1) (-] < 5 + 5
P11 P0,1




é@% General form

Set of measurements I’
Set of outcomes B
Probability distribution over measurements p(t)

Jur = {Z?J{ﬂ@*(-!'r t) <Cz|T=(r1,29,..., r|T|) € Bxlfrl}
L

Uncertainty relations have an operational interpretation telling us how well we can
retrieve information using two particular measurements.

Maximally certain states are the best encoding with respect to those measurements.



g Linking two fundamental concepts

Uncertainty

Principle \ P > Non-locality

\

Steering



Assumption about rules:
For all questions s_t and all answers ; there exists exactly one winning answer b for Bob

Rules written as strings (W,Christandl, Doherty, ‘08): 7, , = (2=, 2'=!, .. )

s o

Correct answer for + = ()  Correct answer for  — 1



@ Making Alice and Bob’s life difficult..

1. Can agree on any strategy beforehand
2. Once the game starts, they can no longer communicate

Amount of non-locality measured by winning probability

Pwin = ZP{S'I t] Z?}fm b= If;:¢|31 t]
st i, b



dS d gdMme

t € {0,1}

be{0,1}

Rules as an equation s-t =a+b mod 2

Rules as strings

zo,0 = (0,0) Ip—
Ll = (111} i
L0 = (0,1) |
-_1:1:1:{1,(}} - s=




ég)? Why is hon-locality limited?

Pvin

i N
=
o6
ey |
it
'—

Popescu and Rohrlich ‘96: Why is nature not more non-local?

More non-locality would allow for much better information processing:
Less communication (van Dam’00), store more information (verSteeg, W '08),

send more information per bit (Pawlowski, Paterek, Kaszlikowski, Scarani, Winter, Zukowski ‘09),...
Being locally quantum implies quantum correlations (Barnum, Beigi,Boixo,Elliot, Wehner ’09)...

Would need to break the uncertainty principle for a set of measurements to have
more non-locality.



Producing answers

!

Measurement
el

il Outcome O
7 .
l Encoding of
_fot=0 =1
‘ Lsa = I:'"Es,:x :-I.ﬂ,-,a }

xg,0 = (0,0) 4 N
ro1 = (1,1) To give the right answer Bob needs to
z10=(0,1) retrieve bit J:iﬂ_ from the encoding

r11 = (1,0)

AN y
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Steering

RN > @

Encoding of

Lsa = I:.Eij'] . Ii?il)

1 Es=1 = {P(‘ILPfﬂ:Ln}ﬂ
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Producing answers

Measurement
t=1)
- t=I)
(Retrieve zi3 )

Measurement
=1
: i=1
(Retrieve Ty )

Pwin —Zp (s,t Zg} b= 1“1|€ t)

(i l!l.l

—Zp (a|s) [Zp )p(a 3,1‘,{1}]

0
1
0)
Uncertainty principle
1 limits non-locality

Uncertainty relation, for any state

S p(O)p(a o)y, . < G
L



%}% Steering to the maximally certain states

1. Fix Bob’s measurements

2. For these measurements, for the maximally certain states pz

it _ For XOR games, quantum
zz: PUP(Ts alt) = Gz Alice can steer to the

maximally certain states of

3. If Alice can steer to the maximally certain states Bob’s optimal
measurements:
t
I :E (s, ¢ E a,b=x, |51 _
Pwin ?( ' ) ; ?( ' 'L’=”“| ' } More non-locality would
5.t i, b

require a violation of the

= Z p(s)plals)Cz. uncertainty principle.

5,0
The amount of non-locality is exactly determined by the amount of “uncertainty”

and our ability to steer:

In any theory, going beyond the optimum winning probability would require a
violation of the uncertainty principle with respect to the set of steerable states.



Example CHSH

XI 01,0 — {ﬂ ”}

T [:| 1 '::]. } . . . . _ _ 1
Rules distribution over questions p(s) = p(t) = 2

r1,0 = (0,1)

£ 1.1 '::]. ”}

Optimal measurements for Bob: measure Zand X.  |1}(1]|<

1 1 1
5t o (10)0] + |+) —|]_E—m
| | 1
5t o (10)(0] + =) —|]_E—m

For the maximally certain states

1 ( ) = id 1 ( ) = id
9 Poo T P11) = 9 9 Ao T o) = 9



@g Non-locality for different theories

* Classical deterministic: No uncertainty, but also no steering.

* Quantum: Uncertainty, but perfect steering.

* No-signaling: No uncertainty, and perfect steering.
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Uncertainty and non-locality are

linked in any possible physical theory.

~

v




@ Uncertainty vs. complementarity

/ Uncertainty

CHSH example:

% (p(xolt = 0) + pla|t = 1))

<iy
S

‘ |_L

5

~

/ Complementarity \

CHSH example: Cannot learn
rodry =8

Could be equally uncertain (and
non-local) but less complementary!

. /




g Summary and open questions

>

Linked two fundamental concepts

Degree of non-locality is already
determined by two concepts:
uncertainty relations and steering

Holds for any physical theory.

superstrong
non-locality
it could be




g Summary and open questions

* What properties fully characterize quantum theory?

* How strong can uncertainty relations for multiple measurements be in quantum
theory?

* Uncertainty vs. complementarity?
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