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Two central concepts of quantum mechanics are the uncertainty principle, and non-locality. These two funda-
mental features have thus far been distinct concepts. Here we show that they are inextricably and quantitatively
linked. Quantum mechanics cannot be more non-local with measurements which respect the uncertainty prin-
ciple. In fact, the link between uncertainty and non-locality holds for all physical theories. More specifically,
the degree of non-locality of any theory is determined by two factors – the strength of the uncertainty principle,
and the strength of a property called “steering”, which determines which states can be prepared at one location
given a measurement at another. For known inequalities, the steering inquantum mechanics is determined by
non-signalling making the degree of non-locality determined by the strengthof the uncertainty principle alone.
This submission is based on arXiv:1004.2507, to appear in Science. A newer version is attached which cannot

yet appear on the arXiv.

Non-local correlations in quantum mechanics are much
stronger than in a classical world. However, quantum cor-
relations are weaker than what the no-signalling principlede-
mands [1]. It is often asked why quantum mechanics is not
more non-local? That is, is there a principle which limits the
degree of quantum non-locality? Information-theory [2, 3],
communication complexity [4], and local quantum mechan-
ics [5] may provide some rationale why limits on quantum
theory may exist. But evidence suggests that many of these
attempts provide only partial answers. Here, we take a very
different approach and relate the limitations of non-localcor-
relations to two inherent properties of any physical theory:
uncertainty relations and our ability to steer.

UNCERTAINTY RELATIONS

The modern approach to quantify uncertainty is to use en-
tropic measures (see full version for details). Such entropic
uncertainty relations have the great advantage over tradtional
formulations in that they provide bounds that depend only on
the measurements, and not on the choice of state, and hence
quantify their inherent incompatibility. It has been shownthat
for two measurements, entropic uncertainty relations do in
fact imply Heisenberg’s uncertainty relation [6], providing us
with a more general way of capturing uncertainty. Such rela-
tions also play an important role in quantum cryptography.

Entropic functions are, however, a rather coarse way of
measuring the uncertainty of a set of measurements, as they
do not distinguish the uncertainty inherent in obtaining any
combination of outcomesx(t) for different measurementst.
It is thus useful to consider much more fine-grained uncer-
tainty relations consisting of a series of inequalities, one for
each combination of possible outcomes, which we write as
a string~x = (x(1), . . . , x(n)) ∈ B×n with n = |T | [16].
That is, for each~x, a set of measurementsT , and distribution
D = {p(t)}t,

P cert(σ; ~x) =

n
∑

t=1

p(t) p(x(t)|t)σ ≤ ζ~x(T ,D) . (1)

For a fixed set of measurements, the set of inequalities

U =

{

n
∑

t=1

p(t) p(x(t)|t)σ ≤ ζ~x | ∀~x ∈ B×n

}

, (2)

thus forms a fine-grained uncertainty relation, as it dictates
that one cannot obtain a measurement outcome with certainty
for all measurements simultaneously wheneverζ~x < 1. The
values ofζ~x thus confine the set of allowed probability distri-
butions, and the measurements have uncertainty ifζ~x < 1 for
all ~x. Fine-grained uncertainty relations are directly relatedto
the entropic ones, and have both a physical and an information
processing appeal [17]. To characterise the “amount of uncer-
tainty” in a particular physical theory, we are thus interested
in the values of

ζ~x = max
σ

n
∑

t=1

p(t)p(x(t)|t)σ (3)

where the maximization is taken over all states allowed on a
particular system (for simplicity, we assume it can be attained
in the theory considered). We will also refer to the stateρ~x that
attains the maximum as a “maximally certain state”. However,
we will also be interested in the degree of uncertainty exhib-
ited by measurements on a set of statesΣ quantified byζΣ

~x

defined with the maximisation in (3) taken overσ ∈ Σ.

Example: Consider the binary spin-1/2 observablesZ
andX. If we can obtain a particular outcomex(Z) given that
we measuredZ with certainty, i.e.p(x(Z)|Z) = 1, then the
complementary observable must be completely uncertain i.e.
p(x(X)|X) = 1/2. If we chose which measurement to make
with probability1/2 then this notion of uncertainty is captured
by the relations valid for all~x = (x(X), x(Z)) ∈ {0, 1}2,

1

2
p(x(X)|X) +

1

2
p(x(Z)|Z) ≤ ζ~x =

1

2
+

1

2
√

2
(4)

where the maximally certain states are given by the eigen-
states of(X + Z)/

√
2 and(X − Z)/

√
2.
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NON-LOCAL CORRELATIONS

To state our result, we briefly recall the concept of non-
local correlations. Instead of considering measurements on
a single system we now consider measurements on two (or
more) space-like separated systems traditionally named Alice
and Bob. We label Bob’s measurements usingt ∈ T , and
useb ∈ B to label his measurement outcomes. For Alice, we
uses ∈ S to label her measurements, anda ∈ A to label her
outcomes [16]. When Alice and Bob perform measurements
on a shared stateσAB the outcomes of their measurements can
be correlated. Letp(a, b|s, t)σAB

be the joint probability that
they obtain outcomesa andb for measurementss andt. We
can now again ask ourselves, what correlations are possible
in nature? In other words, what probability distributions are
allowed?

Bell inequalities [7] are used to describe limits on such joint
probability distributions. They are most easily explainedin
their more modern form in terms of a game played between
Alice and Bob with questionss,t chosen with probabilities
p(s),p(t) and answersa,b. A set of rules determines whether
a andb are winning answers. Again for simplicity, we assume
the game is unique – for every settings and outcomea of Al-
ice there is a string~xs,a = (xs,a

(1), . . . , xs,a
(n)) ∈ B×n of

lengthn = |T | that determines the correct answerb = xs,a
(t)

for questiont for Bob. We say thats anda determine a “ran-
dom access coding” [8], meaning that Bob is not trying to
learn the full string~xs,a but only the value of one entry. The
case of non-unique games is a straightforward but cumber-
some generalisation. To characterize what distributions are
allowed, we are generally interested in the winning probabil-
ity maximized over all possible strategies for Alice and Bob

P game
max = max

S,T ,σAB

P game(S, T , σAB) , (5)

which is also referred to as a Tsirelson’s type bound for the
game [9]. The difference between the winning probabil-
ity P game

max of a particular theory, and the value that can be
achieved classically is thereby referred to as the strengthof
non-local correlations for this theory. However, the connec-
tion we will demonstrate between uncertainty relations and
non-locality holds even before this optimization.

Example: The CHSH inequality [10] can be expressed
as a game in which Alice and Bob receive binary questions
s, t ∈ {0, 1} respectively, and similarly their answersa, b ∈
{0, 1} are single bits. Alice and Bob win the CHSH game
if their answers satisfya ⊕ b = s · t. We can label Alice’s
outcomes using string~xs,a and Bob’s goal is to retrieve the
t-th element of this string. Fors = 0, Bob will always need to
give the same answer as Alice in order to win and hence we
have~x0,0 = (0, 0), and~x0,1 = (1, 1). For s = 1, Bob needs
to give the same answer fort = 0, but the opposite answer
if t = 1. That is,~x1,0 = (0, 1), and~x1,1 = (1, 0). For the
CHSH inequality, we haveP game

max = 3/4 classically,P game
max =

1/2 + 1/(2
√

2) quantum mechanically, andP game
max = 1 for a

theory allowing any non-signalling correlations.

STEERING

The third concept, we need in our discussion is steerability,
which determines what states Alice can prepare on Bob’s sys-
tem remotely. Imagine Alice and Bob share a stateσAB , and
consider the reduced stateσB = trA(σAB) on Bob’s side.

σB =
∑

a

p(a|s) σs,a with σs,a ∈ S , (6)

corresponding to an ensembleEs = {p(a|s), σs,a}a. For alls
there exists a measurement on Alice’s system that allows her
to prepareEs = {p(a|s), σs,a}a on Bob’s site and for any set
of ensembles{Es}s that respect the no-signalling constraint,
i.e., for which there exists a stateσB such that (6) holds, we
can in fact find a bipartite quantum stateσAB and measure-
ments that allow Alice to steer to such ensembles. We can
imagine theories in which our ability to steer is either more,
or maybe even less restricted (some amount of signalling is
permitted). Our notion of steering thus allows forms of steer-
ing not considered in quantum mechanics [11–13] or other re-
stricted classes of theories [14]. Our ability to steer, however,
is a property of the set of ensembles we consider, and not a
property of one single ensemble.

RESULT

We are now in a position to state our result, details can be
found in [17]. For any theory, we find that the uncertainty
relation for Bob’s measurements (optimalTopt or otherwise)
acting on the states that Alice can steer to is what determines
the strength of non-locality. More specifically,

P game
max = max

{Es}s

∑

s

p(s)
∑

a

p(a|s) ζ
σs,a

~x (Topt,D) , (7)

and hence the probability that Alice and Bob win the game
depends only on the strength of the uncertainty relations with
respect to the sets of steerable states. This shows a quantita-
tive relationship between these fundamental concepts which
hold for any theory. In quantum theory, can we remove the
dependence on steering? Alice needs to be able to prepare
the ensemble{p(a|s), ρ~xs,a

}a of maximally certain states on
Bob’s system. In general, it is not clear that the maximally
certain states for the measurements which are optimal for Bob
in the game can be steered to. But this can be achieved in cases
where we know the optimal strategy. For all XOR games, that
is correlation inequalities for two outcome observables (which
include CHSH as a special case), as well as other games where
the optimal measurements are known we find that the states
which are maximally certain can be steered to [17]. We thus
have that the uncertainty relations for Bob’s optimal measure-
ments give a tight bound

P game
max =

∑

s

p(s)
∑

a

p(a|s)ζ~x(Topt,D) , (8)
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where we recall thatζ~x is the bound given by the maximiza-
tion over the full set of allowed states on Bob’s system. It is
an open question whether this holds for all games in quantum
mechanics.

An important consequence of this is that any theory that
allows Alice and Bob to win with a probability exceeding
P game

max requires measurements which do not respect the fine-
grained uncertainty relations given byζ~x for the measure-
ments used by Bob (the same argument can be made for Al-
ice). Even more, it can lead to a violation of the corresponding
min-entropic uncertainty relations [17]. For example, if quan-
tum mechanics were to violate CHSH more it would need
to do so with measurements which are more certain. The
same measurements would need to violate the min-entropic
uncertainty relations [15]. This relation holds even if Alice
and Bob were to perform all-together different measurements
when winning the game with a probability exceedingP game

max :
for these new measurements there exist analogous uncertainty
relations on the setΣ of steerable states, and a higher win-
ning probability thus always leads to a violation of such an
uncertainty relation. Conversely, if a theory allows any states
violating even one of these fine-grained uncertainty relations
for Bob’s (or Alice’s) optimal measurements on the sets of
steerable states, then Alice and Bob are able to violate the
Tsirelson’s type bound for the game.

CHSH EXAMPLE

Although the connection between non-locality and uncer-
tainty is more general, we examine the example of the CHSH
inequality to gain some intuition on how uncertainty relations
of various theories determine the extent to which the theory
can violate Tsirelson’s bound [17]. Briefly, in quantum the-
ory, Bob’s optimal measurements areX andZ which have
uncertainty relations given byζ~xs,a

= 1/2 + 1/(2
√

2) of (4).
Thus, if Alice could steer to the maximally certain states for
these measurements, they would be able to achieve a winning
probability given byP game

max = ζ~xs,a
i.e. the degree of non-

locality would be determined by the uncertainty relation. This
is indeed the case – if Alice and Bob share the singlet state
then Alice can steer to the maximally certain states by mea-
suring in the basis given by the eigenstates of(X +Z)/

√
2 or

of (X−Z)/
√

2. For quantum mechanics, our ability to steer is
only limited by the no-signalling principle, but we encounter
strong uncertainty relations limiting non-locality.

On the other hand, for classical deterministic mechanics we

have no uncertainty relations on the full set of deterministic
states, but our abilities to steer to them are severely limited,
giving P game

max = 3/4. This bound also holds for (random-
ized) local hidden variable theories. Finally, there are theories
which are maximally non-local, yet remain no-signalling [1].
These have no uncertainty, i.e.ζ~xs,a

= 1, but unlike in the
classical world we still have perfect steering, so they win the
CHSH game with probability1.

For any physical theory we can thus consider the strength
of non-local correlations to be a tradeoff between two as-
pects: steerability and uncertainty. In turn, the strengthof
non-locality can determine the strength of uncertainty in mea-
surements. However, it does not determine the strength of
complementarity of measurements [17]. The concepts of un-
certainty and complementarity are usually linked, but we find
that one can have theories which are just as non-local and un-
certain as quantum mechanics, but which have less comple-
mentarity. This suggests a rich structure relating these quanti-
ties, which may be elucidated by further research in the direc-
tion suggested here.
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