The uncertainty principle deter mines the non-locality of quantum mechanics
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Two central concepts of quantum mechanics are the uncertainty priremigleon-locality. These two funda-
mental features have thus far been distinct concepts. Here we shidivehare inextricably and quantitatively
linked. Quantum mechanics cannot be more non-local with measutemvhith respect the uncertainty prin-
ciple. In fact, the link between uncertainty and non-locality holds for allspda} theories. More specifically,
the degree of non-locality of any theory is determined by two factors -ttaegth of the uncertainty principle,
and the strength of a property called “steering”, which determines wiétbsscan be prepared at one location
given a measurement at another. For known inequalities, the steerugimium mechanics is determined by
non-signalling making the degree of non-locality determined by the strefighie uncertainty principle alone.
This submission is based on arXiv: 1004.2507, to appear in Science. A newer version is attached which cannot

yet appear on the arXiv.

Non-local correlations in quantum mechanics are much-or a fixed set of measurements, the set of inequalities

stronger than in a classical world. However, quantum cor-

relations are weaker than what the no-signalling princifgle n

mands ml]. It is often asked why quantum mechanics is not U= {Zp(t) p(mm\t)g <(z|VEe an} )

more non-local? That is, is there a principle which limits th t=1

degree of quantum non-locality? Information-thecﬁyﬁh, 3]

communication complexity [4], and local quantum mechan-thus forms a fine-grained uncertainty relation, as it détat

ics [5] may provide some rationale why limits on quantumthat one cannot obtain a measurement outcome with certainty

theory may exist. But evidence suggests that many of thesfer all measurements simultaneously wheneyek: 1. The

attempts provide only partial answers. Here, we take a veryalues of¢; thus confine the set of allowed probability distri-

different approach and relate the limitations of non-lazat  putions, and the measurements have uncertainty i 1 for

relations to two inherent properties of any physical theory all . Fine-grained uncertainty relations are directly related

uncertainty relations and our ability to steer. the entropic ones, and have both a physical and an informatio
processing appeal [17]. To characterise the “amount ofnce
tainty” in a particular physical theory, we are thus intéees

UNCERTAINTY RELATIONS in the values of

n

The modern approach to quantify uncertainty is to use en- (z= maXZp(t)p(x(t)lt)a ©)
tropic measures (see full version for details). Such eitrop 7 =
uncertainty relations have the great advantage over orzalti
formulations in that they provide bounds that depend only ofhere the maximization is taken over all states allowed on a
the measurements, and not on the choice of state, and henggrticular system (for simplicity, we assume it can be g
quantify their inherent incompatibility. It has been shatvat  jn the theory considered). We will also refer to the statéhat
for two measurements, entropic uncertainty relations do imttains the maximum as a “maximally certain state”. However
fact imply Heisenberg's uncertainty relation [6], providius  we will also be interested in the degree of uncertainty exhib
with a more general way of capturing uncertainty. Such relajted by measurements on a set of stafeguantified by¢>
tions also play an important role in quantum cryptography.  defined with the maximisation in (3) taken ovee X.

Entropic functions are, however, a rather coarse way of Example:  Consider the binary spin/2 observablesZ
measuring the uncertainty of a set of measurements, as they,q x_ |f we can obtain a particular outcomé?) given that
do not distinguish the uncertainty inherent in obtaining an \ye measuredz with certainty, i.e.p(z(%)|Z) = 1, then the
combination of outcome_s(t) for different measurements  omplementary observable must be completely uncertain i.e
It is thus useful to consider much more fine-grained uncerb(x(x)|X) = 1/2. If we chose which measurement to make

tainty relations consisting of a series of inequalitiese ér \yith probability1 /2 then this notion of uncertainty is captured
each combination of possible outcomes, which we write a$yy the relations valid for alif = (), (%)) € {0,1}2
astring? = (z(V,...,2™) € B*" with n = |7 [186]. ’ ’

That is, for eaclh¥, a set of measuremerts and distribution 1 1 1

D = (p(t)}. SPEOIX) + 2p(EP12) < G =

5 +ﬁ (4)

P (os ) =Y p(t) pz|t)y < C2(T,D). (1)  where the maximally certain states are given by the eigen-
t=1 states of X + Z)/v2 and(X — Z)/v/2.



NON-LOCAL CORRELATIONS STEERING

To state our result, we briefly recall the concept of non- The third concept, we need in our discussion is steerability
local correlations. Instead of considering measurements owhich determines what states Alice can prepare on Bob’s sys-
a single system we now consider measurements on two (d¢em remotely. Imagine Alice and Bob share a statg;, and
more) space-like separated systems traditionally namieg Al consider the reduced statg = tra(c45) on Bob's side.
and Bob. We label Bob’s measurements using 7, and
useb € B to label his measurement outcomes. For Alice, we oB = Zp(a|s) Os,qWith o, , € .7, (6)
uses € S to label her measurements, an@ A to label her a
outcomes@G]. When Alice and Bob perform measurements .
on a shared state, 5 the outcomes of their measurements cancorresponding to an ensemidlg = {.p(cf‘s)’ 0s,a}a- FOr alls
be correlated. Lep(a, bls, {).,,, be the joint probability that there exists a measurement on Alice’s system that allows her

they obtain outcomes andb for measurements andt¢. We to prepare, = {p(als), 0s.0}a ON Bob's site and for any set

can now again ask ourselves, what correlations are possiblﬁef el’flsff\;ﬂvg:egfﬁ}sr tha)\(ti rtespe(;t the no—slﬁn?&gghcigstr\;a\;nt,
in nature? In other words, what probability distributioms a -€., 10 ch there exists a s ate; such that (6) holds, we
allowed? can in fact find a bipartite quantum statg z and measure-

Bell inequalitiesﬁ?] are used to describe limits on suchtjoi ment§ that a”.OW A|IC€ _to steer t(.).SUCh ensembl_es. We can
probability distributions. They are most easily explairied imagine theories in which our ability to steer is either more

their more modern form in terms of a game played betweer?' ma_lybe even Ies§ restricted.(some amount of signalling is
Alice and Bob with questions, chosen with probabilities permitted). Our notion of steering thus allows forms of stee

p(s)p(t) and answera,b. A set of rules determines whether ing not considered in quantum mechanics [11—13] or other re-

a andb are winning answers. Again for simplicity, we as:~:ume$trICtGEd classes of theor|é£[14]. Our ability to steer, ey,

the game is unique — for every settingnd outcome of Al- is a property of the set of ensembles we consider, and not a

ice there is a strings , = (75,1, ..., 25,™) € B*™ of property of one single ensemble.
lengthn = |7| that determines the correct answet z ,(*)
for questiont for Bob. We say that anda determine a “ran- RESULT

dom access codingF[S], meaning that Bob is not trying to
learn the full stringz; , but only the value of one entry. The

. . . We are now in a position to state our result, details can be
case of non-unique games is a straightforward but cumber- : ) .
o ) R found in [17]. For any theory, we find that the uncertainty
some generalisation. To characterize what distributiors a

allowed, we are generally interested in the winning probabi relation for Bob’s measurements (optin,; or otherwise)

. S . . . acting on the states that Alice can steer to is what detegmine
ity maximized over all possible strategies for Alice and Bob . o
the strength of non-locality. More specifically,

P& — max P&M°(S,T,0 5
R, Tl O pae e 500 Y plale) 5 T D), @)

which is also referred to as a Tsirelson’s type bound for the ) “
game @]. The difference between the winning probabil-and hence the probability that Alice and Bob win the game
ity Pgame of a particular theory, and the value that can bedepends only on the strength of the uncertainty relatiotis wi
achieved classically is thereby referred to as the streafjth respect to the sets of steerable states. This shows a guantit
non-local correlations for this theory. However, the carne tive relationship between these fundamental conceptshwhic
tion we will demonstrate between uncertainty relations andold for any theory. In quantum theory, can we remove the
non-locality holds even before this optimization. dependence on steering? Alice needs to be able to prepare

Example: The CHSH inequality [10] can be expressedthe ensemblép(als), pz, , }o Of maximally certain states on
as a game in which Alice and Bob receive binary question8ob’s system. In general, it is not clear that the maximally
s,t € {0, 1} respectively, and similarly their answetsb € certain states for the measurements which are optimal for Bo
{0,1} are single bits. Alice and Bob win the CHSH game in the game can be steered to. But this can be achieved in cases
if their answers satisfy, & b = s - t. We can label Alice’s where we know the optimal strategy. For all XOR games, that
outcomes using string, , and Bob's goal is to retrieve the is correlation inequalities for two outcome observablelsi¢i
t-th element of this string. For= 0, Bob will always need to  include CHSH as a special case), as well as other games where
give the same answer as Alice in order to win and hence wéhe optimal measurements are known we find that the states
havez, o = (0,0), and#y; = (1,1). Fors = 1, Bob needs which are maximally certain can be steered to [17]. We thus
to give the same answer for= 0, but the opposite answer have that the uncertainty relations for Bob’s optimal measu
if t = 1. Thatis,#1 = (0,1), andZ;; = (1,0). Forthe  ments give a tight bound
CHSH inequality, we hav&g2e = 3/4 classically,Pg20e =
1/2 + 1/(2v/2) quantum mechanically, angig2¢ = 1 for a e = "p(s) > plals)Cs(Topt, D) (8)
theory allowing any non-signalling correlations. s a
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where we recall thafz is the bound given by the maximiza- have no uncertainty relations on the full set of determiinist
tion over the full set of allowed states on Bob’s system. It isstates, but our abilities to steer to them are severely it
an open question whether this holds for all games in quanturgiving Pg2%¢ = 3/4. This bound also holds for (random-
mechanics. ized) local hidden variable theories. Finally, there asoties
An important consequence of this is that any theory thatvhich are maximally non-local, yet remain no-signalli% 1
allows Alice and Bob to win with a probability exceeding These have no uncertainty, i.€z, ., = 1, but unlike in the
Peame requires measurements which do not respect the fineslassical world we still have perfect steering, so they W@ t

grained uncertainty relations given ki for the measure- CHSH game with probability.

ments used by Bob (the same argument can be made for Al- £ 4y physical theory we can thus consider the strength
|c§). Even more, it can lead to'a violation of the corresplogdl of non-local correlations to be a tradeoff between two as-
min-entropic uncertainty relatloﬁﬂl?]. For example - pects: steerability and uncertainty. In turn, the strergth

tum mechanics were to violate CHSH more it would needy, o, |ocajity can determine the strength of uncertainty @am
to do so with measurements which are more certain. Thg;ements. However, it does not determine the strength of

same rr_measuremen;sﬁwould need to violate the min-entropiG, mnjementarity of measurements [17]. The concepts of un-
uncertainty relations [15]. This relation holds even if@8i o ainty and complementarity are usually linked, but we fin

and Bob were to perform all-together different megsuii@entthat one can have theories which are just as non-local and un-
when winning the game with a probability exceedififf,’”:  certain as quantum mechanics, but which have less comple-

for these new measurements there exist analogous ””Wrtai%entarity. This suggests a rich structure relating thesetu

relations on the set of steerable states, and a higher win- o5 \yhich may be elucidated by further research in theeelire
ning probability thus always leads to a violation of such an;q suggested here.

uncertainty relation. Conversely, if a theory allows argtes
violating even one of these fine-grained uncertainty refeti

for Bob’s (or Alice’s) optimal measurements on the sets of
steerable states, then Alice and Bob are able to violate the
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