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Abstract. We solve an open problem of constructing a quantum walk that
not only detects but also finds marked vertices in a graph. The number of steps
of our quantum walk is quadratically smaller than the classical hitting time
of any reversible random walk P on the graph. Our approach is new, simpler
and more general than previous ones. We introduce a notion of interpolation
between the classical walk P and the absorbing walk P ′, whose marked states
are absorbing. Then our quantum walk is simply the quantum analogue of this
interpolation. Contrary to previous approaches, our results remain valid when
the random walk P is not state-transitive, and also in the presence of multiple
marked vertices. As a consequence we improve the best known algorithm for
spatial search on the 2D-grid.

1 Introduction

Many classical randomized algorithms rely heavily on random walks or Markov
chains. Quantum walks are natural generalizations of classical random walks and
have similarly found many applications. Ambainis [1] was the first to solve a natural
problem – the “element distinctness problem” – using a quantum walk. Following
this, many quantum walk algorithms were discovered [2–4].

In spatial search problem the displacement constraints are modeled by an undi-
rected graph G and the desired vertices are marked. Classically, a simple algorithm
to find a marked vertex is to repeatedly apply some random walk P on G until one
of the marked vertices is reached. The expected running time of such algorithm is
known as the hitting time of P .

Quantum walk algorithms for the spatial search problem [5] were studied for hy-
percube [6] and grid [7, 8] and the notion of hitting time has been carried over to
the quantum case in [8–13]. Usually, the quantum hitting time has a quadratic im-
provement over the classical one. However, until the present paper, several serious
restrictions were imposed: a quantum algorithm could only detect the presence of
marked vertices [10], but to be able to find them the Markov chain was assumed to
be reversible, state-transitive, and posess a unique marked vertex [14, 13]. The exist-
ing detection algorithm is quite intuitive and well understood, whereas the finding
algorithm requires an elaborate proof whose intuition is not clear. This is due in part
to a modification of the quantum walk, so that the resulting walk is not a quantum
analogue of a Markov chain anymore.



Whether this quadratic speed-up for finding a marked vertex also holds for any
reversible Markov chain and for multiple marked vertices was an open question.
In the technical version [15] of the present paper, we answer this question in the
positive. We choose another approach by modifying P directly, and by considering the
quantum analogue of the modified random walk. Using this construction we obtain
more general results while simplifying the proofs of existing results. Moreover, this
construction is more intuitive than previous approaches.

2 Context

The problem

We consider an undirected graph G, with an unknown set of marked vertices M .
Our goal is to find any of the marked vertices using only evolutions that preserve the
locality of G, i.e., to perform a spatial search on G [5]. We denote this problem by
Find(G), and also consider a weaker version Detect(G), where only the presence
of marked vertices has to be detected (i.e., detect whether M is non-empty). We will
add a superscript “(= k)”, or “(≥ k)”, to denote promise versions of these problems,
where the promise is that |M | = k, or |M | ≥ k, whenever it is non-empty.

Classical hitting time

A natural approach to searching on a graph consists of using a random walk, or
Markov chain. Let P be an ergodic and reversible Markov chain. The classical hitting
time HT(P,M) of Markov chain P , is defined as the expected number of applica-
tions of P required to hit a marked vertex in M when starting from the stationary
distribution π of P . This can be used to design a randomized algorithm for Detect
and Find based on the corresponding random walk.

Proposition 1. Find(≥k)(G) can be solved with high probability and randomized
complexity of order T = max|M ′|=k HT(P,M ′).

Quantum hitting time

Quantum walks were successfully used by Szegedy for detecting the presence of
marked vertices quadratically faster than using P .

Theorem 1 (Szegedy, [10]). Detect(≥k)(G) can be solved with high probability
and quantum complexity of order T = max|M ′|=k

√
HT(P,M ′).

Nonetheless, very little was known about the problem of finding a marked vertex,
except in the restricted case where P is state-transitive and there is a unique marked
vertex (i.e., |M | = 1).

Theorem 2 ([14, 13]). Assume that P is state-transitive. Find(1)(G) can be solved
with high probability and quantum complexity of order T =

√
HT(P,M).

This theorem improves and extends previous ad-hoc results for the hypercube [6] and
the grid [7, 8]. However, before the present article, no result was known for a Markov
chain that is not state-transitive.



3 Main result

Let pM =
∑

x∈M πx be the probability to pick a marked vertex from the stationary
distribution π of P . Our main result is most simply expressed in the case where an
approximation p∗M of pM is known.

Theorem 3. Let p∗M be such that |p∗M − pM | ≤ pM/3. Then, Find(≥k)(G)
can be solved with high probability and quantum complexity of order T =
max|M ′|=k

√
HT(P,M ′).

Note that the assumption that an approximation of pM is known is very similar to the
requirement that the number of marked elements in the original version of Grover’s
algorithm is known. It is shown in the technical article [15] how to deal with the
case of an unknown pM . If not for this restriction, this theorem extends the result of
Theorem 1 to the Find problem. Unlike in Theorem 2, it imposes no limitation on
the Markov chain (except being ergodic and reversible) and the number of marked
vertices. It therefore provides a generic quadratic speed-up on the classical random
walk algorithm in Proposition 1.

Algorithm

Here is a high-level description of the algorithm that leads to Theorem 3. We use
Szegedy’s technique [10] to design a quantum analogue of a Markov chain. While
previous algorithms for this problem proposed to use the quantum analogue of P
itself, or of an absorbing version P ′, where marked vertices are probability sinks, the
novelty of our approach is to consider a Markov chain which is an interpolation at the
classical level i.e., P (s) = (1−s)P+sP ′ for 0 ≤ s ≤ 1. Then, we consider the quantum
analogue W (P (s)), of this interpolation. This is similar to the concept of adiabatic
evolution and indeed leads to a surprising connection between the notions of adiabatic
condition and quantum hitting time [16]. The stationary distribution π(s) of P (s)
interpolates between the stationary distribution π of P , and its projection onto the
marked vertices. Let X be the state space of P . Then from Szegedy’s construction,
the quantum analogue W (P (s)) will have as unique 1-eigenvector the following state:

|π(s)〉|0〉 =
∑
x∈X

√
πx(s)|x〉|0〉 = cos θ(s)|U〉|0〉+ sin θ(s)|M〉|0〉, (1)

where θ(s) = arcsin
√
pM/[1− s(1− pM )] and |M〉, |U〉 are the normalized pro-

jections of |π〉 =
∑

x∈X
√
πx|x〉 onto marked and unmarked vertices, respectively.

Hence, the interpolation coefficient s can be used to tune the overlap between the
1-eigenvector of the quantum walk and its projection |U〉 onto marked vertices. For
s∗ = 1−2pM

1−pM
, the overlap with marked and unmarked vertices is balanced. The al-

gorithm then simply consists of measuring the state |π(0)〉|0〉 in the eigenbasis of
W (P (s∗)), which can be done by quantum phase estimation [17, 18]. This projects
the state onto |π(s∗)〉|0〉 with probability close to 1/2. Measuring the first register of
this state in the computational basis then yields a marked element with probability
1/2, which therefore solves the problem. It remains to prove that the cost of the
quantum phase estimation is given by the square root of the hitting time HT(P,M),
which is done in the technical article [15].
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