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Why the existence of topologically ordered phases of
matter is surprising?

1. Ground states of TQO models are highly entangled.
This entanglement cannot be accounted only by local
correlations. Non-local entanglement in macroscopic
systems is extremely fragile.

2. How can nature prepare these highly entangled states
without having a large-scale quantum computer?

3. Many models of TQO require multi-spin interactions
which are not very realistic.



Quantum spin lattices
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To what extent ground state properties of Hy are
sensitive to addition of weak local perturbations?

Ho— Ho+¢eV, V= ZVB, IVs| < 1.



Gap stability
The ground state ¥(0) is a g-dimensional subspace. The

ground subspace V¥(e) includes g smallest eigenvalues of
Hy + €V. Well-defined as long as A(e) > 0.
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Main goal: find sufficient conditions under which Hy has
a non-zero stability radius €y, that is, the gap A(e) has a
constant (L-independent) lower bound on the interval

e € [0, ¢o] for some €y > 0.



Exact quasi-adiabatic continuation theorem
(Hastings 2005,2010, Osborne 2007)

Suppose the spectral gap A(\) has a constant lower bound
for A € [0,€]. Then ¥(0) and ¥(e) can be mapped to each
other by some unitary operator U,

U(e) =U - ¥(0)
and U can be implemented in time ¢t = O(1) as L — oc.
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Here G.(s) is a local (approximately) Hamiltonian with
bounded strength of interactions.

The states ¥(0) and ¥(e) are in the same “topological
phase” if W(e) = U - ¥(0) and U can be implemented by
evolution under a local Hamiltonian in time O(1).



Can it happen that all ground states of local Hamiltonians

are in the same phase?

Topological trivial phase = product states

States with long-range bipartite entanglement would be in

a non-trivial phase
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Generating a singlet between
remote qubits by local uni-
tary dynamics can take time
of order L (Lieb-Robinson
bound).

However, such states cannot appear as ground states of

local Hamiltonians.



Topological quantum order: a pattern of long-range multi-
partite entanglement that can be present in the ground
states of local Hamiltonians.

Toric code state (Kitaev 97)
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Topological quantum order: a pattern of long-range multi-
partite entanglement that can be present in the ground
states of local Hamiltonians.

Toric code state (Kitaev 97)

0

Qubits live on links.
1

‘]‘I’tﬂ> - Z ‘C>

cycles

C)

Theorem (S.B., Hastings, and Verstraete 2006):

The toric code state on a lattice of size L cannot be gener-
ated from the product state by local unitary dynamics in
time o(L).

= W,. and the product state are in different phases.



Previous work: gap stability for the toric code for several
special perturbations:

Trebst, Werner, Troyer, Shtengel, Nayak (2007)
Magnetic field diagonal in the Z-basis
Reduction to the 2D transverse field Ising model

Vidal, Thomale, Schmidt, Dusuel (2009)
Magnetic field diagonal in the Y-basis
Reduction to the Xu-Moore model; use of self-duality

Klich (2009)
Generic perturbations; non-degenerate ground state

Generic perturbations diagonal in the Z-basis
Cluster expansions for the partition function



New results: sufficient gap stability conditions for a large
class of ideal models Hy and generic perturbations.

TQO-1: Ground subspace of Hy is a quantum code

with a macroscopic distance.

TQO-2: Consistency between the global and the local
ground subspaces of Hy

(formal definition will appear later)

TQO-1 is only a property of the ground state
TQO-2 is a property of the Hamiltonian

We shall prove that TQO-1,2 together are sufficient
for stability under generic local perturbations
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(X B is a Hermitian operator acting only on a cluster B
Only 2 x 2 clusters

@Qp must be a projector: Q% = Qp

Projectors must pairwise commute: QQpQc = Qc@B

Ground states of Hy are zero-eigenvectors of every projector ()



To summarize, we need three properties of the
ideal model:

e Spatially local
e Lrustration free
e Term-wise commuting

Several extra conditions related to TQO will be
introduced later...



Examples:

e The toric codes and the surface codes )

e Topological color codes

> Ho=) Qg

e (Quantum double models

e String-net models )

e Any of the above models with excitations

Kitaev 97
Bombin and Martin-Delgado 06
Levin and Wen 05

Commutativity guarantees that Hy has constant spectral
gap (A > 1) above the ground state !
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VB is a Hermitian operator acting only on a cluster B

Exponential decay of interactions:

For clusters of size r X r max |V Bl < exp(—ur)

1 = decay rate
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Global ground subspace:
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TQO-1 (macroscopic distance):
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What is the meaning of TQO-2 for stabilizer codes?

Global ground states are invariant un-

©®© 0000 | i
00O0O0O0O0 der the action of a stabilizer group
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Each generator is supported on a 2 x 2
block B.

Hy :ZQB
B

() p penalizes states that violate at least one generator G
supported inside B.



What is the meaning of TQO-2 for stabilizer codes?

A+ ————. . TQO-2 (global-local consistency):
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Lemma. A stabilizer code Hamiltonian Hy obeys TQO-2
iff any stabilizer S € S supported on M can be
written using only generators supported on M.

Toric code: if a loop operator has support inside M, it is a
product of plaquette operators supported inside M.




To summarize, we need five properties of the
ideal model Hy:

e Spatially local
e Frustration free
e Term-wise commuting
e Macroscopic distance (TQO-1)
e Local-global consistency (TQO-2)
The perturbation V' involves exponentially de-

caying interactions with strength J and decay
rate u > 0.



Main theorem:

There exists a constant ¢ = ¢(u, a) such that for all large
enough L and for all € > 0 the spectrum of Hy + €V is
contained (up to an overall energy shift) in the union of
intervals

U
k

e Lk runs over eigenvalues of H

e Interval /i is centered at k

P
Iy

= eck for k > 0
= ec- exp(—VL)

0

, Energy

Corollary: the spectral gap around Iy is at least 1/2 for all
e < e =(1+2k)"1(2c)7 .



1. The bound on the stability radius does not depend on
the dimension of the local Hilbert spaces.

2. The overall energy shift may be a function of L and e.

3. Conditions TQO-1,2 can be efficiently checked for any
stabilizer code Hamiltonian.

4. The theorem applies to systems with symmetries. A
system has a symmetry group G iff all local terms in Hj and

V' commute with G. Conditions TQO-1,2 must be obeyed
only for operators Oy, commuting with G.

Symmetry protected topological order: non-trivial topological

phases may exist even in 1D systems.

X. Chen, Z.-C. Gu, and X.-G. Wen
arXiv:0903.1069, arXiv:1008.3745



5. Conditions TQO-1,2 are well-defined for classical Hy.

TQO-1: All ground states are locally indistinhuishable.
Hence unique ground state.

TQO-2: If some spin o, deviates from its ground state value,
at least one interaction touching o, is violated.
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Analogous to the Peierls condition in the stability theory

for quantum perturbations of classical Hamiltonians
(Datta, Frolich, Rey-Bellet 1997)



Why the ground state energy splitting is exp. small 7

Exact quasi-adiabatic continuation theorem implies

wa(l):U'wa(O)a Ozzl,...,g,

where U describes unitary evolution under (approximately)
local Hamiltonian for time O(1).

Eo(1) = (Ya(1)|Ho + €V [1ha(1)) = (¥ (0)|H|ta(0)),

H =U'(Hy + eV)U.

Lieb-Robinson bound implies that H is a sum of (approx-
imately) local interactions. Hence H cannot distinguish
orthogonal ground states 1,(0).

Hence all F,(1) are (approximately) the same.



Sketch of the proof

\ , Techniques:
Generic perturbations

Hamiltonian flow equations

Lieb-Robinson bounds

Quasi-adiabatic continuation

Relative bounds on V

Stability theorem



Def. A perturbation V' is relatively bounded by Hy with
a constant b iff

IVl < bl Ho vl

for all vectors

Lemma. The spectrum of Hy+ V is contained in the union of
intervals

I = [(1 — b)k, (1 + b)k]

where k runs over eigenvalues of H.

Applying the lemma to Hy + ¢V we get the desired energy
bands Ij, as long as b - |¢] < 1. Hence we need a bound

b= 0(1).




Def. A perturbation V is called locally block-diagonal iff
it is a sum of local operators preserving the global
ground subspace of Hy, that is,

Macroscopic distance implies that Vg acts trivially on the
ground states. Perform an overall energy shift to achieve

Vg P =0

Lemma: A locally block-diagonal perturbation satisfying
Ve - P =0 is relatively bounded by Hy with a constant

b= b(p).




Block-diagonality = relative boundness (rough idea)

Decompose the entire Hilbert space into sectors labeled by
configurations of excitations.

Simplest case: excitation is a 2 X 2 square B such that
QB = 1 instead of QB =i
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Block-diagonality = relative boundness (rough idea)
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Hence Vp annihilates any sector that contains no excita-
tions near B.

Assume for simplicty that i belongs to a sector with &
excitations. Then there are only O(k) terms Vg such that

VY # 0.
V|| ~k and [Hov| =k

Hence V is relatively bounded by Hy with a constant b of
order 1.



Sketch of the proof

\ , Techniques:
Generic perturbations

Hamiltonian flow equations

Lieb-Robinson bounds

Quasi-adiabatic continuation

Relative bounds on V

Stability theorem



Suppose V' is not block-diagonal. We shall construct a
unitary operator U such that

U(HO v x GV)UT = Ho +eW + Hga,'r'bage

W is a locally block-diagonal perturbation with a fast
enough decay of interactions. W is relatively bounded by
Hy with a constant b = O(1).

H jarbage Includes all unwanted terms. Must have exponen-
tially small norm.

Hence ¢V changes eigenvalues of Hy by a factor 1 + €b and
an additive error ||Hgqurbage |-



How to construct U (Hamiltonian flow equations):

First solve the linearized block-diagonalization problem.
U only needs to make the Hamiltonian locally block-
diagonal in the first order in e:

U(H() + eV + (SW)UT = Ho+ CEQV/ =8 &'W’ o Hga'rbage

Here W, W' are locally block-diagonal, V,V’ are generic
perturbations, ¢ is some constant, and

§' < 5+ Ofe)

U =exp(eS), S'=-5,
Pt . ([S,Hy+W]|+V)-P=0

Construct S using power series in 0. Use the Lieb-Robinson
bound to show that V/ and W” decay fast enough.



How to construct U (Hamiltonian flow equations):

First solve the linearized block-diagonalization problem.
U only needs to make the Hamiltonian locally block-
diagonal in the first order in e:

U(Ho + €V + W)U = Hy + ce*V' + W' + Hyarpage

Here W, W' are locally block-diagonal, V,V’ are generic
perturbations, ¢ is some constant, and

6" <0+ O(e)
Iterate m = O(log L) times obtaining
: 1 m
e = ce’'= et = N — =(c)* = exp(=L).

C

Include the residual V' into Hj4rpage-



How to construct U (quasi-adiabatic continuation):

For any fixed Hy and V' the spectral gap A(e) of Hy + €V
is a continuous function of € such that A(0) > 1.

We shall assume that the gap A()\) is not too small on the
interval [0, €], say at least 1/3, and use this assumption to

show that that the gap A(e¢) is much larger than 1/3, say,
A(e) > 2/3.

If this holds for all € € [0,¢p] then A(e) ¢ [1/3,2/3] for
any € € [0, ¢9]. By continuity it implies A(e) > 2/3 for all
eI [O, 60]. A




How to construct U (quasi-adiabatic continuation):

Now we are in the settings of the exact quasi-adiabatic evo-
lution theorem:

VU(e)=U-¥(0)=U-P,

where U describes unitary evolution under (approximately)
local Hamiltonian for time O(1).

The Hamiltonian
H=U'(Hy+eV)U

~

is globally block-diagonal, that is, H - P C P.
This is almost what we need:

H=Hy+W, W =U'HyU — Hy+ eU'VU

W has strength O(e) and fast enought decay of interactions.
However W is only globally block-diagonal, W - P C P.



How to construct U (quasi-adiabatic continuation):

Remaining step: reduction from global to local block-
diagonality (the hard part)

00 oy P2
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Using the assumption that H is gapped one can choose the
filter function g(t) such that

W =5 W 5 W, SR OO W, =) Wg,

The magnitude of W decays fast enough for large clusters
B. However individual terms W do not preserve P.

One extra trick is needed to show that W, can be approx-

imated by a locally block-diagonal operator. This approxi-
mation relies on TQO-1,2.



Conclusions
(1) The spectral gap of spin Hamiltonians composed
of local commuting projectors and satisfiying condi-
tions TQO-1,2 does not close in a presence of generic
local perturbations.

(2) Conditions TQO-1,2 can be extended to systems
with symmetries.

(3) Lieb-Robinson bound and the quasi-adiabatic con-
tinuation permit analysis of perturbed quantum sys-
tems which does not rely on perturbative expansions.



