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Abstract

In this talk, I will discuss a test that can distinguish efficiently between pure product states
of n quantum systems and states which are far from product. A key application of the test
is to quantum Merlin-Arthur games with multiple Merlins, where it allows us to prove several
structural results that had been previously conjectured, including the fact that soundness am-
plification is possible and that two Merlins can simulate many Merlins: QMA(k) = QMA(2) for
k ≥ 2. These results imply that 3-SAT can be solved efficiently given two short unentangled
quantum proofs, which in turn implies complexity-theoretic obstructions to the existence of fast
algorithms for a variety of tasks in quantum information theory and elsewhere.

1 Testing product states

The main result I will discuss in this talk is a quantum test to determine whether an n-partite
state |ψ〉 is a product state or far from any product state, and the applications of this test. The
test passes with certainty if |ψ〉 is product, and fails with probability Θ(ε) if the overlap between
|ψ〉 and the closest product state is 1− ε. An essential feature of this test (indeed, as we show, any
possible such test) is that it requires two copies of |ψ〉.

The product test is defined in Protocol 1 below. It uses as a subroutine the swap test for
comparing quantum states [4]. This test, which can be implemented efficiently, takes two (possibly
mixed) states ρ, σ of equal dimension as input, and returns “same” with probability 1

2 + 1
2 tr ρ σ,

otherwise returning “different”. The product test was originally introduced in [7] as one of a family
of tests for generalisations of the concurrence entanglement measure, and has been implemented
experimentally as a means of detecting bipartite entanglement directly [9]. Further, the test was
proposed in [8] as a means of determining whether a unitary operator is product. Our contribution
here is to prove the correctness of the product test for all n, as formalised in the following theorem.

Theorem 1. Given |ψ〉 ∈ Cd1 ⊗ · · · ⊗ Cdn, let

1− ε = max{|〈ψ|φ1, . . . , φn〉|2 : |φi〉 ∈ Cdi , 1 ≤ i ≤ n}.

Let Ptest(|ψ〉〈ψ|) be the probability that the product test passes when applied to |ψ〉.
Then Ptest(|ψ〉〈ψ|) = 1−Θ(ε).

Crucially, the parameters of the test do not depend on n or the local dimensions of |ψ〉.
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Protocol 1 (Product test).

The product test proceeds as follows.

1. Prepare two copies of |ψ〉 ∈ Cd1 ⊗ · · · ⊗ Cdn; call these |ψ1〉, |ψ2〉.

2. Perform the swap test on each of the n pairs of corresponding subsystems
of |ψ1〉, |ψ2〉.

3. If all of the tests returned “same”, accept.
Otherwise, reject.

The proof of Theorem 1 is based on relating the probability of the product test passing to the
action of the qudit depolarising channel. It is known that the maximum output purity of this
channel is achieved for product state inputs [2]; our result, informally, says that any state that is
“close” to achieving maximum output purity must in fact be “close” to a product state.

2 Applications of the product test

I will describe several applications of the product test. The most important of these is that this
test can be used to relate QMA(k) to QMA(2). The complexity class QMA(k) is defined to be the
class of languages that can be decided with bounded error by a poly-time quantum verifier that
receives poly-size witnesses from k unentangled provers [6, 1]. To put QMA(k) inside QMA(2), we
can have two provers simulate k provers by each submitting k unentangled proofs, whose lack of
entanglement can be verified with the product test. A byproduct of this simulation allows us to
prove amplification of QMA(2) protocols to exponentially small probability of error, and even to
show that, in QMA(2) protocols, the verifier’s measurement operator corresponding to an “accept”
outcome can be taken to be separable.

As a consequence of these results, we can improve upon the results of [1, 3] to obtain a protocol
in QMA(2) that verifies 3-SAT with constant soundness gap and O(

√
n poly log(n)) qubits (where

n is the number of clauses). This allows us to prove hardness results for various QMA(2)-complete
problems (i.e. problems which are equivalent to optimising a linear functional over the set of separa-
ble states), under restrictive assumptions on the hardness of 3-SAT; stronger assumptions naturally
lead to stronger hardness results.

An example of such a hardness result is the following statement about the difficulty of approx-
imating SEP(d, d), the set of separable quantum states on d× d dimensions. We show that, if Kd

is a convex set that approximates SEP(d, d) to within constant trace distance, then membership
in Kd cannot be decided in polynomial time unless 3-SAT ∈ DTIME(exp(

√
n logO(1)(n))). Another

example is that the minimum output entropy of a quantum channel cannot be estimated up to a
constant in polynomial time, under the same assumption on the complexity of 3-SAT. Making the
stronger assumption that there are no subexponential-time algorithms for 3-SAT even allows us to
rule out algorithms for these problems running in time dO(log1−ε d), for any ε > 0.
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