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Introduction

● Simulation of quantum spin lattices: central in condensed matter

... e.g. understand the ground state properties of such systems

● Various successful algorithms, e.g.
- Quantum Monte Carlo (QMC)
- the Density Matrix Renormalization Group (DMRG) for 1D

● Want to understand (prove) range of applicability



  

One dimension is special

● Quantum problem QMA-hard,
even on 2D lattice of qubits

[Oliveira & Terhal '05]

● Quantum version QMA-hard !!
[Aharonov, Gottesman, Irani & Kempe '07]

● classical 2D spin glasses NP-hard

● “physical” hard problems exist:
simple spectrum & ground states

● Hard instances have a very
complicated spectrum and
highly entangled ground states!

→ unrealistic!

anything down
to 2D systems

spin chains

● there exist problems
where algorithms don't work

[Barahona '82]

● DMRG ess. always works in practice

● classical problem is easy



  

DMRG

● Density Matrix Renormalization Group (DMRG): [White '92] 
Variational method over Matrix Product States (MPS)

● Relevant property of MPS: Low amount of entanglement

⇒ ground states of gapped Hamiltonians well described by MPS

● Ground states of QMA-hard 1D systems are highly entangled 
⇒  they cannot be described by MPS ⇒ DMRG cannot work!

 Conjecture: DMRG works well on all “physical” systems,
in particular those with low ground state entanglement.

● MPS have an efficient classical description 

L

L

S L ≤const. (very non-generic!)

[Hastings '08]



  

... yet finding its ground state is at least as hard as factoring! 

However ...

 Even under this assumption DMRG cannot always work.

● Without uniqueness & frustration freeness, its even NP-hard.

● ... and our results imply more limitations:
- the success of DMRG cannot even be certified
- DMRG can't even work on frustration free systems

(cf. poster of Aharonov, Ben-Or, Brandao and Sattath: 
1D Hamiltonian with unique g.s. and 1/poly(N) gap is QCMA-hard)

● We construct a 1D Hamiltonian with:
- unique MPS ground states
- nice spectral properties, in part. a 1/poly(N) spectral gap
- it is frustration free 

(≡ ground state already minimizes all local terms in the Hamiltonian)



  

QMA and ground state problems

● How does this relate to the complexity of “finding ground states”?

● Decision problem: Given                ,
determine if                  or
(≈ compute       with poly. accuracy) 

H=∑ hi

E 0 H a E 0 H b
E 0

● This problem is inside QMA:
The proof is            – using a quantum computer,
              can be estimated with polynomial accuracy.

∣0 〉
N

E ∣0 〉

● Can we, conversely, take any problem in QMA 
– i.e. anything which can be proven to a quantum computer –
and rephrase it as a ground state problem?

E 0

a

b
“no”

“yes”

“don't care” 1 / polyN 

● QMA: The quantum version of NP – the class of problems
where “yes” instances have a quantum proof which can be
efficiently checked by a quantum computer



  

Kitaev's QMA-hardness construction

 Arbitrary problem in QMA: Can it be rewritten as a g.s. problem?

● QMA problem:
U 1

U 2

U 3

U T

verifier circuit

∣ 〉(real/fake)
proof

∣0 〉  : proof accepted

∣1 〉  : proof rejected

output

∣ 〉=∑t=0

T

∣t 〉∣t 〉⇒                              encodes the “proof history”

● construct Hamiltonian with valid history as ground state (if it exists!)
H = H init  H evol  H final

∣0 〉

Ham. penalizes: wrong
ancillas

wrong
transitions

proof
rejected

● “no” instances have to violate some of these terms:
   ⇒ their g.s. energy is by 1/poly(N) above “yes” instances (“promise gap”)

∣ 1 〉 ∣ 2 〉 ∣T 〉. . . . . . . . . . . .∣ 0 〉



  

How to get rid of the entanglement

U 1

U 2

U 3

U T

∣ 〉

∣ 〉=∑t=0

T

∣t 〉∣t 〉

∣0 〉

highly ent. arbitrary quantum circuit: highly entangling!

● “Problem”: QMA problems yield highly entangled ground states! 

● Less entangled ground states → Restrict proof & verifier! 

● Our choice: Classical proofs and classical verifier circuits

⇔ restriction to problems in NP

●                               superposition of                     classical states,
thus only weakly entangled (→ MPS structure in 1D)
(With two-qubit gates only, each timeslice can be slightly entangled)

∣ 〉=∑t=0

T

∣t 〉∣t 〉

T=poly N 



  

The structure of the Hamiltonian

● QMA problems: Spectrum complicated 
(many proofs with similar acceptance probablity)

● classical deterministic verifiers: deterministic acceptance/rejection

● For any classical input      to the verifier (incl. ancillas!), define

ℋ a=span {∣a 〉 ,U 1∣a 〉 , ,U T⋯U 1∣a 〉 }

⇒  H acts independently on the 

H∣ℋ a
=

TA1 −1
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
−1 B1


H init

H finalH trans=∑
t  1 −1

−1 1 
t , t1

●                   : number of 
wrongly initialized ancillas

●            : proof accepted/rejected

A=0,1,2,

B=0,1

● This is a quantum random walk, techniques & solutions exist

∣a 〉

ℋ a



  

Analyzing the spectrum

-∃ ∣a0 〉  s.th. A=0,B=0  in ℋ a0

-ground state: E 0=0  in ℋ a0
 (frustration free!)

! We are interested in the spectral gap for each instance inde-
pendently, not in the promise gap between “yes” and “no” instances.

- gap: i) Within        ℋ a0
: E1=1 /T 2

ii) To g.s. of other ℋ a : 
E≥E 0 A=0, B=1=1 /T 2 

“yes” instances

- ground state for A=0, B=1
-∃ ∣a0 〉  s.th. A=0,B=0

- gap: i) within this subspace: 1 /T 2
ii) to subsp. with         : 

using Lemma on 
A0 1 /T 2

min PQ≥

“no” instances

● spectral gap 1 /T 2

● “yes” instances
frustration free

● excited states also
have simple ent.
structure



  

One-dimensionalizing the problem

● Problem in 1D: How to make time register locally accessible?

● Encode time in spatial location of qubits!

∣0 〉 ∣1 〉 ∣2 〉 ∣T−1 〉 ∣T 〉

 

∣ 〉=∣0∣∅∣∅∣∅⋯〉∣∅∣1∣∅∣∅⋯〉∣∅∣∅∣2∣∅⋯〉

∣ 〉=∑t=0

T

∣t 〉∣t 〉

.........

● But how to implement H?

[Aharonov, Gottesman, Irani & Kempe '07]



  

One-dimensionalizing the problem

∣0 〉 ∣1 〉 ∣2 〉 ∣T−1 〉 ∣T 〉

 

● Realization of H: add control register;
implement “head” propagating qubits and implementing circuit 

● “Clairvoyance lemma”: State space splits into 
i) one subspace with valid control register configurations 
ii) subspaces with only invalid configurations

1 /T 

 ⇒ Low-energy sector in subspace i) – same result as before.

.........

● Extra term             penalizes illegal control register states

⇒ Any subspace ii) has energy at least               (boosted).

H penalty



  

Implications for DMRG

● apply to verifier circuit with exactly one satisfying assignment
→ e.g. prime factor decomposition

The resulting Hamiltonian
- has a unique MPS ground state
- with a                   spectral gap above
- low-energy eigenstates are MPS
- is frustration free (there are only “yes” instances)

 But finding its ground state is at least as hard as factoring.

Notes: i) Ground state energy is always zero (decision problem trivial)!
ii) Solution can be read off the ground state (⇒ harder than decision problem!)

(problems in NP ∩ coNP with unique proofs, or unique TFNP)

1 /poly N 



  

NP-hard instances

● What happens if we take an NP-complete problem?

The resulting Hamiltonian
- has MPS ground states
- a                   spectral gap above ground states
- low-lying eigenstates are MPS

● There are “yes” and “no” instances ⇒ 
- not frustration free (for “no” instances)
- ground state not unique (at least for “no” instances) 

 Finding the ground state (energy) is NP-hard.

1 /poly N 

Notes: i) Ground state energy answers NP problem.
ii) “yes” instance: ground state contains solution (⇒ harder than decision problem!)



  

More implications

● DMRG (probably) cannot be certifyable!

Certifyability: We cannot guarantee that DMRG converges,
but if it converges, it returns a certificate proving it worked.

● Proof: - Take Hamiltonian encoding an NP problem
- Assume DMRG certifyable ⇒ “no” instances can be disproven

● DMRG cannot even provably work for frustration free systems!

● Proof: - Take Hamiltonian H encoding an NP-complete problem
- Let DMRG algorithm run on H and check g.s. energy 
- “yes” instance ⇔ frust. free ⇔ DMRG works ⇔ 
- “no instance ⇔

⇒NP=coNP

E 0=0
E 01 / polyN 

⇒ Could be used to solve NP-complete problems!



  

Summary

⇒ class of Hamiltonians with:
unique MPS ground state, frustration free, 1/poly(N) gap

which is at least as hard as factoring

 ⇒ class of Hamiltonians with
MPS ground states, 1/poly(N) gap

which is NP-hard

● apply Kitaev's QMA construction (and 1D version) to NP problems

 ⇒ no certifyable DMRG can exist

 ⇒ no provable DRMG for frustration free systems

What requirements do we need to prove that DMRG works?? ?

(“classical” version of 1D problem)
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