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Introduction

« Simulation of quantum spin lattices: central in condensed matter

... €.9. understand the ground state properties of such systems

« Various successful algorithms, e.g.
- Quantum Monte Carlo (QMC)
- the Density Matrix Renormalization Group (DMRG) for 1D

« Want to understand (prove) range of applicability




One dimension is special

ccccaes anything down spin chains
:::::: toZDsystemS 00000000000
* there exist problems « DMRG ess. always works in practice

where algorithms don't work

» classical 2D spin glasses NP-hard | « classical problem is easy
[Barahona '82]

« Quantum problem QMA-hard, « Quantum version QMA-hard !!
even on 2D lattice of qubits [Aharonov, Gottesman, Irani & Kempe '07]
[Oliveira & Terhal '05]
 “physical” hard problems exist: « Hard instances have a very
simple spectrum & ground states complicated spectrum and

highly entangled ground states!

— unrealistic!




DMRG

 Density Matrix Renormalization Group (DMRG): [White '92] MPQ

Variational method over Matrix Product States (MPS)

« MPS have an efficient classical description

 Relevant property of MPS: Low amount of entanglement
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(very non-generic!)

= ground states of gapped Hamiltonians well described by MPS [Hastings '08]

« Ground states of QMA-hard 1D systems are highly entangled
= they cannot be described by MPS = DMRG cannot work!

Conjecture: DMRG works well on all “physical” systems,

in particular those with low ground state entanglement.




However ...

Even under this assumption DMRG cannot always work.

« We construct a 1D Hamiltonian with:
- unique MPS ground states
- hice spectral properties, in part. a 1/poly(N) spectral gap

- it is frustration free
(= ground state already minimizes all local terms in the Hamiltonian)

.. yet finding its ground state is at least as hard as factoring!

« Without uniqueness & frustration freeness, its even NP-hard.

(cf. poster of Aharonov, Ben-Or, Brandao and Sattath:
1D Hamiltonian with unique g.s. and 1/poly(N) gap is QCMA-hard)

e ... and our results imply more limitations:
- the success of DMRG cannot even be certified
- DMRG can't even work on frustration free systems




QMA and ground state problems

« QMA: The quantum version of NP — the class of problems
where “yes” instances have a quantum proof which can be
efficiently checked by a quantum computer

« How does this relate to the complexity of “finding ground states”?

« Decision problem: Given H=)_ h, , E,
determine if E,(H)<a or E,(H)>b " '
. no
(=~ compute E, with poly. accuracy)

b
} 1/poly(N)
 This problem is inside QMA: T a

The proof is \cp()}@N — using a quantum computer,
E(|w,)) can be estimated with polynomial accuracy.

« Can we, conversely, take any problem in QMA
— I.e. anything which can be proven to a quantum computer —
and rephrase it as a ground state problem?




Kitaev's QMA-hardness construction | ;
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Arbitrary problem in QMA: Can it be rewritten as a g.s. problem? MPQ

- QMA problem: verifier circuit v 0] : proof accepted
Tl T 1 1 17 ’ output
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= [x)=2_,
 construct Hamiltonian with valid history as ground state (if it exists!)
H = H + H + H

wrong wrong proof
ancillas transitions rejected

w, ®|t| encodes the “proof history”

init evol final

Ham. penalizes:

 “n0” instances have to violate some of these terms:
= their g.s. energy is by 1/poly(N) above “yes” instances (“promise gap”)




How to get rid of the entanglement

 “Problem”: QMA problems yield highly entangled ground states!
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highly ent. arbitrary quantum circuit: highly entangling!

 Less entangled ground states — Restrict proof & verifier!

 Our choice: Classical proofs and classical verifier circuits
& restriction to problems in NP

x>:ZtT:0 (/Jt>®|t> superposition of T=poly(N) classical states,

thus only weakly entangled (— MPS structure in 1D)
(With two-qubit gates only, each timeslice can be slightly entangled)




The structure of the Hamiltonian

« QMA problems: Spectrum complicated

(many proofs with similar acceptance probablity)
» classical deterministic verifiers: deterministic acceptance/rejection

» For any classical input \a> to the verifier (incl. ancillas!), define
%azspan[|a>, U1|a>,..., UT---U1|a>]
= H acts independently on the JZ
e A=0,1,2,... : number of

wrongly initialized ancillas
« B=0,1: proof accepted/rejected

— H

final

 This is a quantum random walk, techniques & solutions exist




Analyzing the spectrum )

! We are interested in the spectral gap for each instance inde-

MPQ

pendently, not in the promise gap between “yes” and “no” instances.

“yes” instances

-3 |a,) s.th. A=0,B=0 in 7,
-ground state: E,=0 in JZ, (frustration free!)
- gap: i) Within 77, : E=Q(1/T?
i) To g.s. of other 7 .
E>E (A=0,B=1)=0Q(1/T?)

“no” instances

-4 |a,) s.th. A=0,B=0
- ground state for A=0,B=1
- gap: i) within this subspace: Q(1/7?)
ii) to subsp. with A>0: Q(1/7?)
using Lemmaon A, (P+Q)=...

\
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« spectral gap Q(1/7?)

 “yes” instances
frustration free

« excited states also
have simple ent.
structure




One-dimensionalizing the problem

T
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* Problem in 1D: How to make time register locally accessible? MPQ
T
|X>: tho Lljt>® |t> [Aharonov, Gottesman, Irani & Kempe '07]

« Encode time in spatial location of qubits!
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« But how to implement H?




One-dimensionalizing the problem

« Realization of H: add control register;
implement “head” propagating qubits and implementing circuit

v |
oogo‘ooolooqo\ooolooloo\o --------- oolooqolooo.oqoo
Vol v V2] W) W

 Extra term H ..y penalizes illegal control register states

« “Clairvoyance lemma”: State space splits into
1) one subspace with valid control register configurations
i) subspaces with only invalid configurations

= Any subspace ii) has energy at least Q(1/T) (boosted).

= Low-energy sector in subspace i) — same result as before.




Implications for DMRG

e apply to verifier circuit with exactly one satisfying assignment
— e.g. prime factor decomposition

(problems in NP N coNP with unique proofs, or unique TFNP)

The resulting Hamiltonian
- has a unique MPS ground state
- with a 1/poly(N) spectral gap above
- low-energy eigenstates are MPS
- Is frustration free (there are only “yes” instances)

But finding its ground state is at least as hard as factoring.

Notes: i) Ground state energy is always zero (decision problem trivial)!
i) Solution can be read off the ground state (= harder than decision problem!)




NP-hard instances

« What happens if we take an NP-complete problem?

» There are “yes” and “no” instances =
- not frustration free (for “no” instances)
- ground state not unique (at least for “no” instances)

The resulting Hamiltonian
- has MPS ground states
- a 1/poly(N) spectral gap above ground states

- low-lying eigenstates are MPS

Finding the ground state (energy) is NP-hard.

Notes: i) Ground state energy answers NP problem.
i) “yes” instance: ground state contains solution (= harder than decision problem!)




More implications

« DMRG (probably) cannot be certifyable!

Certifyability: We cannot guarantee that DMRG converges,
but if it converges, it returns a certificate proving it worked.

 Proof: - Take Hamiltonian encoding an NP problem
- Assume DMRG certifyable = “no” instances can be disproven

= NP =coNP

« DMRG cannot even provably work for frustration free systems!

* Proof: - Take Hamiltonian H encoding an NP-complete problem
- Let DMRG algorithm run on H and check g.s. energy
- “yes” instance < frust. free & DMRG works < E =0
- “no instance < E,>1/poly(N)

— Could be used to solve NP-complete problems!




Summary

 apply Kitaev's QMA construction (and 1D version) to NP problems

= class of Hamiltonians with:
unique MPS ground state, frustration free, 1/poly(N) gap
which is at least as hard as factoring

= class of Hamiltonians with
MPS ground states, 1/poly(N) gap
which is NP-hard

(“classical” version of 1D problem)

= no certifyable DMRG can exist

= no provable DRMG for frustration free systems

‘) What requirements do we need to prove that DMRG works? ‘)
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