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How hard is Quantum 
Many-Body Theory?

Answer 1 (computer scientists): Really, really hard.  Even in 
1d, the problem  of approximating the ground state energy to 
an accuracy of 1/poly(N) is QMA-complete (Aharonov, Gottesman, and 

Kempe and Irani)

Answer 2 (numerical work): Really, really hard.  Brute force 
simulation of a system of N spins takes a time 2^N

Answer 3 (80 years of practice): In some cases, not that hard.  
Lots of successes like BCS superconductivity theory, density 

functional theory, etc... plus even success on strongly interacting 
problems (matrix product methods)



Two algorithms to find ground states:

Exact diagonalization:
Requires exponentially long time.  Even 

finding ground state is typically limited to 
30-40 spin-1/2 spins.

Variational Matrix Product (DMRG):
Remarkably successful in 1d.  Works 

especially well for systems with a spectral 
gap.  Accurate because of limited 

entanglement

Why does it work and how can we improve?



Matrix product methods 
(including DMRG):

Based on ground state ansatz of the form:

si = −1, 0, 1

si = −1/2, 1/2

Spin 1:

Spin 1/2:

Matrices A are k-by-k matrices.  There are 
variational parameters.

Works extremely well for 1d gapped systems.  Why?

NDk2

α, β, γ = 1...k

Ψ(s1, s2, s3, ..., sN ) =
∑

α,β,γ,δ,...

Ψ(1)
α (s1)A

(2)
αβ(s2)A

(3)
βγ (s3)...Ψτ (sN )

= 〈Ψ(1)(s1)|A(2)(s2)A(3)(s3)...|Ψ(N)(sN )〉



Successes of Matrix 
Product Methods:

• Heisenberg spin chain ground state (White 
and Huse)

• Extension to periodic boundary conditions 
(Verstraete, Porras, Cirac)

• Time dependent methods (Vidal)

• Use of time dependent methods to study 
spin-charge separation (Kollath, 
Schollwoeck, Zwerger)



Entanglement in Matrix 
Product States:

Schmidt rank at most k in matrix product 
state.  Approximately true for ground state?  
Answer: see the area laws later in this talk!

Ψ(s1, s2, s3, ..., sN ) =
∑

α,β,γ,δ,...

Ψ(1)
α (s1)A

(2)
αβ(s2)A

(3)
βγ (s3)...Ψτ (sN )

= 〈Ψ(1)(s1)|A(2)(s2)A(3)(s3)...|Ψ(N)(sN )〉

Ψmps =
k∑

γ=1

A(γ)ΨL(γ)⊗ΨR(γ) Ψ0 =
2N∑

γ=1

A0(γ)Ψ0
L(γ)⊗Ψ0

R(γ)



MPS describes a state 
(can be used 

variationally or as a 
certificate)

Given an MPS, we can compute 
the expectation value of the 

energy in a time O(Nk3)
on a classical computer



A formal result on why quantum many-
body theory is “easy” (Hastings, this talk) :

• The interaction strength is O(1)

• The interactions are nearest-neighbor

• The local Hilbert space dimension is O(1)

The following problem is in NP: Given a one-
dimensional Hamiltonian on N qudits such that

and given the promises that 
(1) the gap           between the ground state and 
first excited state obeys                           and 
(2) either the ground state energy  is  less than 

zero or at least 1/poly(N)

∆E
1/∆E = O(1)

Decide if the ground state energy is zero or less.



Colloquially: approximate the 
ground state energy to 

accuracy 1/poly(N)

0

1/poly(N)
NO

YES

E0

E1 Ω(1)



• The interaction strength is O(1)

• The interactions are nearest-neighbor

• The local Hilbert space dimension is O(1)

Decide if the ground state energy at s=1 is zero or 
less.

This problem is in P: Given a one-dimensional 
parameter-dependent Hamiltonian         on N qudits 
such that         is trivial and such that for all 

Hs
0 ≤ s ≤ 1

and given the promises that  
(1) the gap           between the ground state and 
first excited state obeys                           for all 

and 
(2) either the ground state energy  is  less than 

zero or at least 1/poly(N) at s=1

∆E
1/∆E = O(1)

0 ≤ s ≤ 1

H0



• What is an area law and why is it important 
for simulation?

• Correlations vs. Entanglement: Why 
Quantum Expanders make it tough to prove 
an area law

• Proof of an area law for one-dimensional 
systems, and implications for simulation

• A conjecture relating certain correlations to 
entanglement

Outline:



Area laws:

Sα(ρ) = 1
1−α ln(tr(ρα))

Von Neumann and 
Renyi entropy of a 

density matrix:

A
B

Entropy of reduced density matrix on a region A 
for an arbitrary state is of order the volume of A.  

Area law means that it is of order the surface 
area.

How much entanglement between A and B?  
Less entanglement means easier to simulate.

S = −tr(ρ ln(ρ))

Ψ0 =
∑

α

A(α)ΨA(α)⊗ΨB(α); S = −
∑

α

|A(α)|2 ln(|A(α)|2)



Relation between area law and 
existence of MPS for one-dimensional 

systems:

Bound on Renyi 
entropy implies 

bound on 
truncation error:

ε(k) =
∞∑

α=k+1

|A(α)|2

Prove this by minimizing entropy subject 
to constraint on truncation error.  Bound 
for              implies that truncation error 

scales as 1/poly(k) (Verstraete and Cirac).
α ≤ 1

log(ε(k)) ≤ 1− α

α

(
Sα(ρ)− log(

k

1− α
)
)



Relation between area law and existence 
of MPS for one-dimensional systems:

We have bound on truncation error on a given cut.  
Repeat across all cuts.  Error is N/poly(k).

P2...N

P3...N

P4...N

1 2 3 4 ... N

Pi...N          projects onto k largest eigenvalues of 
ground state reduced density matrix on sites i...N

Ψmps = PN−1,NPN−2,N ...P2,NΨ0



Handwaving argument for an area law:

• If there is a gap, correlations are short-
ranged.

• Therefore, only the degrees of freedom near 
the surface of A are entangled with the 
degrees of freedom in B.

• Therefore, there is an area law.

Assumptions: short-range Hamiltonian, 
unique ground state, spectral gap.



Can we make this rigorous?
(why area laws are tricky)

• Given the assumption of a gap 
and short-range Hamiltonian, 
it is possible to prove that the 
correlations are short-range.

• However, even in one-
dimension, there exist states 
with short-range correlations 
but arbitrarily large 
entanglement.  This is based 
on quantum expanders.

M. B. Hastings, PRB 69, 104431 (2004); 
M. B. Hastings, PRL 93, 140402 (2004).

M. B. Hastings, cond-mat/0701055;
A. Ben-Aroya and A. TaShma, quant-ph/
0702129.

Need to consider more than correlations 
to prove an area law!



An area law in 1-d
Assumptions: nearest neighbor Hamiltonian with interaction strength 
bounded by J, finite dimensional Hilbert space D on each site, unique 
ground state, spectral gap.

M. B. Hastings, arXiv:0705.2024.

(Sketched) proof:

Suppose not.  Then, the entropy is large over a range 
of cuts of the chain, not just one.

.....

S ≤ Smax = exp(O(v/∆E))

l0 = Smax/3 ln(D)

S ≥ 2Smax/3

We will derive a contradiction from this 
based on relative entropy.

i i + l0



Define       to be the maximum entropy of an interval of 
length l contained in the interval between 

Sl
i, i + l0

Some trivial properties:
S1 ≤ ln(D)
S2l ≤ 2Sl

The second inequality cannot be saturated, as then the density matrix on the 
interval of length 2l factorizes exactly, and so the ground state factorizes, 

contradicting the assumption of non-vanishing entanglement entropy.

We will go further and use the large entanglement entropy 
to show: S2l ≤ 2Sl −O(l∆E/v)

This gives a contradiction for large l and proves the main theorem.



Two lemmas:
1) Given the assumptions before, for any j,l we can define 
Hermitian, positive definite operators,                               , 
with operator norms bounded by unity such that  

OB(j, l), OL(j, l), OR(j, l)

‖OB(j, l)OL(j, l)OR(j, l)− |Ψ0〉〈Ψ0|‖ ≤ exp(−O(l∆E/v))

and such that the operators are 
supported like this:

O

j j+lj−l+l j+1

O

RO

B

L



2) Given the assumptions before, 
suppose we can find a density matrix     
which is a mixture of pure states of 
Schmidt rank k across some cut, such 
that 

ρ

〈Ψ0|ρ|Ψ0〉 = P > 0.

Then, the entropy S across the cut is bounded by

S ≤ ln(k) +O(v/∆E) ln(D) ln(1/P )
+O((v/∆E) ln(v/∆E) ln(D))

Prove this using lemma 1.  Can approximate 
ground state better and better using the state
OB(j, l)OL(j, l)OR(j, l)ρOR(j, l)OL(j, l)OB(j, l)
for larger and larger l. Each such state has 
Schmidt rank bounded by           . kD2l



Lemma 2 works for Renyi entropies also.   Also, Lemma 
2 gives ability to approximate ground state by a matrix 
product state.  Finally, an upper bound on Renyi or von 
Neumann entropy gives a lower bound on the largest 
Schmidt coefficient across a cut and hence a lower 

bound on P for k=1 in Lemma 2.

F. Verstraete and J. I. Cirac, PRB 73, 
094423 (2006).

von Neumann entropy 
bound

Renyi 
entropy 
bound

Approximating by 
matrix product state

Lemma 2



Back to proving the main theorem:

O

j j+lj−l+l j+1

O

RO

B

L

The expectation value                       
must be close to unity. 
But the expectation value      
must be small since the entropy across the cut is large.  
So, by the Lindblad-Uhlmann theorem, the relative entropy
                                                 must be large.
But this is bounded by               .  
Putting in the constants gives the desired result.

〈Ψ0|OB(j, l)|Ψ0〉 = tr(ρj−l+1,j+lOB(j, l))

tr(ρj−l+1,j ⊗ ρj+1,j+l OB(j, l))

S(ρj−l+1,j+l||ρj−l+1,j ⊗ ρj+1,j+l)
2Sl − S2l



Is this entropy bound tight?
We have S ≤ exp(O(v/∆E))
Conjecture: S ≤ O(v/∆E)

See talk by Irani and related work by 
Gottesman and Hastings 

and maybe even: S ≤ O(
√

v/∆E)



Results and Open 
Questions:

• Given a gap in 1-d, an area law follows.

• Does this apply in higher dimensions?

• Can we tighten the bound?  (see talk by Irani 
and related work by Gottesman and 
Hastings)



Hamiltonian Complexity 
Theory:

• QMA-hardness of 1d problems: Aharonov, 
Gottesman, and Kempe and Irani

• Gapped 1d problems are in NP: Hastings 
(this talk)

• Simulation of dynamics in 1d for log time is 
in P: Osborne

• Hardness of finding MPS ground states (NP-
complete with 1/poly gap and poly bond 
dimensions): Schuch, Cirac, and Verstraete



Sidetrack: a conjecture

!

"

#

$

%

Ψ(s1, s2, ...sN ) =
∑

α,β,...

Aα,β(s1)Aβ,γ(s2)Aγ,δ(s3)...
Matrix product 

state:

Expander graph to 
get large entropy for 

mps but small 
correlations:



Sidetrack: a conjecture (continued)

This particular state cannot be ground state of 
local Hamiltonian as there is no mutual information 
between nearby sites.  But also, it has a certain kind 
of correlation: knowledge of        gives knowledge 
of     .

α, ε
γ

Not only do two point correlations decay exponentially in gapped, 
local systems, but also correlations of operators A,B where B is 

diagonal in Schmidt basis and support is like this:

A

LB



Sidetrack: a conjecture (continued)

We conjecture that exponential decay of these 
more general correlations implies a bound on 

entropy for an mps.  See arXiv:0705.2024.

Expand, but not too fast!


