Oracularization and 2-Prover 1-Round Interactive Proofs against Nonlocal Strategies

> Tsuyoshi Ito (McGill U) Hirotada Kobayashi (NII & JST) Keiji Matsumoto (NII & JST)

> > arXiv:0810.0693

QIP 2009, January 12–16, 2009

Interactive proof

[Babai 1985] [Goldwasser, Micali, Rackoff 1989]

Verifier: randomized poly-time

- $x \in L \Rightarrow$ prob. of acceptance must be $\geq c$
- $x \notin L \Rightarrow$ prob. of acceptance must be $\leq s$

Prover: infinitely powerful computationally

IP=PSPACE [Shamir 1992]

Multi-prover interactive proof (MIP) [Ben-Or, Goldwasser, Kilian, Wigderson 1988]

2 or more provers are kept separated

Provers together try to convince V

V can "cross-check" the provers' answers

MIP=NEXP [Babai, Fortnow, Lund 1991]

Note: Shared randomness between provers does *not* change the computational power

Computational power of MIP

[Feige, Lovász 1992]

- NEXP MIP with
 - Poly provers
 - Poly rounds

- MIP with
 - 2 provers
 - 1 rounds
- Bounded 2-sided error Exp-small 1-sided error

Oracularization technique:

Poly-prover poly-round (with some restriction) \rightarrow 2-prover 1-round

- Each column has odd parity
- Each row has even parity

Max. winning probability = 17/18 in the classical world **1 using prior-entanglement**

Effect of quantum nonlocality on MIP

Entanglement gives provers more power

- Honest provers use nonlocality
 - \rightarrow The power of MIP might increase
- Dishonest provers also use nonlocality
 - \rightarrow Existing MIP protocols become unsound

???? $MIP* \subseteq MIP = NEXP$

Related results about MIP in quantum world (1)

 \oplus MIP(2,1), \oplus MIP*(2,1):

2 provers, 1 round, 1-bit answer, verifier only look at the XOR of the answers

 With some constant 2-sided error, ⊕MIP*(2,1)⊆EXP ⊊ NEXP=⊕MIP(2,1) (unless EXP=NEXP) [Cleve, Høyer, Toner, Watrous 2004]

Entanglement makes the class smaller!

 NP⊆⊕MIP*(2,1) with constant 2-sided error [Cleve, Gavinsky, Jain 2007]

Related results about MIP in quantum world (2)

- Trivially, MIP* \supseteq IP=PSPACE
- [Kempe, Kobayashi, Matsumoto, Toner, Vidick 2008]:
 - PSPACE⊆MIP* with
 - 2 provers, 1 round, 1 1/poly soundness error
 - NEXP \subseteq MIP* with
 - 3 provers, 1 round, $1 1/\exp$ soundness error
 - NEXP \subseteq QMIP (quantum messages) with 2 provers, 1 round, 1-1/exp soundness error
- NEXP \subseteq MIP* with

3 provers, 1 round, $1 - 1/\exp$ soundness error, 1-bit answer [Ito, Kobayashi, Preda, Sun, Yao 2008]

Related results about MIP in quantum world (3)

- [Ben-Or, Hassidim, Pilpel 2008]: NEXP has 2-prover 2-round protocol with constant soundness in new model with
 - Quantum interaction
 - Classical communication between provers
 - Without prior-entanglement

Our results

PSPACE⊆MIP*

with 2 provers, 1 round, exp-small 1-sided error

- 2 provers are more useful than 1, even with entanglement
- Soundness holds for more powerful **no-signaling** provers

• NEXP \subseteq MIP*

with 2 provers, 1 round, $1 - 1/\exp 1$ -sided error

 Limitation of independent sampling: Known 2-prover protocols for NEXP really has error probability 1 – 1/exp in some cases

No-signaling provers

p(a,b|s,t) is called **no-signaling** when

- $p(a,b|s,t) \ge 0$
- $\sum_{a,b} p(a,b|s,t) = 1$
- $\sum_{a} p(a,b|s,t)$ does not depend on s
- $\sum_{b} p(a,b|s,t)$ does not depend on t

Unentangled provers \subseteq Entangled provers \subseteq No-signaling provers

MIP with no-signaling provers \subseteq EXP [Preda]

[KKMTV] proved $1 - 1/O(r^2)$ soundness error against entangled provers We prove 1 - 1/O(r) soundness error against **no-signaling** provers

Analysis of soundness (1)

Suppose: P₁ and P₂ have a no-signaling strategy to convince V with prob. $1 - \varepsilon$, with small ε

 $p(a_1, \dots, a_r; b_1, \dots, b_k | q_1, \dots, q_r; q_1, \dots, q_k) \text{ no-signaling}$ $\Rightarrow p_1(a_1, \dots, a_r | q_1, \dots, q_r) \text{ and } p_2(b_1, \dots, b_k | q_1, \dots, q_k) \text{ are well-defined}$ $q_1, \dots, q_r \longrightarrow \bigoplus_{i=1}^{P_1} \longrightarrow a_1, \dots, a_r \qquad q_1, \dots, q_k \longrightarrow \bigoplus_{i=1}^{P_2} \longrightarrow b_1, \dots, b_k$

This P behaves similarly to P_1

⇒ If $x \notin L$, P₁ and P₂ cannot be accepted w.p. much higher than 2^{-n} (Contradiction!) ⇒ $x \in L$

Final step: Parallel repetition

Running the protocol poly times in parallel → Soundness error becomes exp-small [Holenstein 2007]

Resulting protocol exactly the same as [Cai, Condon, Lipton 1994]

Implication

Oracularization of 1-prover IP protocols works even if 2 provers are just no-signaling

> Cf. 1-prover constant-round IP is weak: $IP(k)=AM \subseteq \Pi_2 P$ [Goldwasser, Sipser 1986 & Babai, Moran 1988]

If we want constant-round interactive proof with exp-small error, asking 2 provers is more powerful than asking 1 prover even if 2 provers are entangled (unless the polynomial hierarchy collapses)

2-prover 1-round protocol for NEXP

3-query PCP for $L \in NEXP$

Provers can cheat with entanglement (Kochen-Specker game, Magic Square game) [Cleve, Høyer, Toner, Watrous 2004] Dummy question prevents perfect cheating

3-query PCP for $L \in NEXP$

High acceptance prob.

All the measurements by provers are almost commuting Soundness error at most $1 - 1/O(|Q|^2) = 1 - 1/\exp(|Q|^2)$ against entangled provers

Similar to [Kempe, Kobayashi, Matsumoto, Toner, Vidick 2008]

- Each column has odd parity
- Each row has even parity

Limit of independent sampling

Summary

2-prover 1-round protocol for PSPACE with **exp-small** soundness error against **no-signaling** provers based on oracularization technique

2-prover 1-round protocol for NEXP with $1 - 1/\exp$ soundness error against entangled provers using oracularization with dummy question

Independent sampling seems to impose limitation on soundness

- The above protocol for NEXP
- Quantum 2-prover 1-round protocol for NEXP by [KKMTV08]

Open problems

- Better soundness for EXP & NEXP
- Upper bound for MIP*
 - [Doherty, Liang, Toner, Wehner] [Navascués, Pironio, Acín] imply 2-prover 1-round MIP*⊆Recursive assuming finite-dim entanglement suffices
- Characterization of MIP^{ns}, MIP with no-signaling provers
 - PSPACE \subseteq MIP^{ns} \subseteq EXP (upper bound based on LP [Preda])
- Parallel repetition for MIP*
- Alternative to oracularization
 - Parallelization
 - Possible using quantum answers from provers [Kempe, Kobayashi, Matsumoto, Vidick 2007]
 - Reducing the number of provers