Classical Interaction
Cannot Replace Quantum Nonlocality

Dmitry Gavinsky

NEC Labs, Princeton
Communication Complexity

\[f : X \times Y \rightarrow \{0, 1\} \]
Communication Complexity

\[f : X \times Y \rightarrow \{0, 1\} \]

\[x \in X \]

\[y \in Y \]

\[\text{Alice receives } x \text{ and Bob receives } y \]
Communication Complexity

\(f : X \times Y \rightarrow \{0, 1\} \)

- Alice receives \(x \) and Bob receives \(y \)
- Alice sends a message to Bob
Communication Complexity

\(f : X \times Y \rightarrow \{0, 1\} \)

- Alice receives \(x \) and Bob receives \(y \)
- Alice sends a message to Bob
- Bob sends a message to Alice
Communication Complexity

\[f : X \times Y \rightarrow \{0, 1\} \]

\[x \in X \quad \rightarrow \quad \text{Alice receives } x \text{ and } Bob \text{ receives } y \]

\[y \in Y \quad \text{...} \quad \leftarrow \text{Bob sends a message to Alice} \]

\[\text{Alice sends a message to Bob} \]

\[\text{Bob sends a message to Alice} \]

D. Gavinsky (NEC Labs)
Communication Complexity

\(f : X \times Y \rightarrow \{0, 1\} \)

- Alice receives \(x \) and Bob receives \(y \)
- Alice sends a message to Bob
- Bob sends a message to Alice
- Bob produces an answer
Communication Complexity

\[f : X \times Y \rightarrow \{0, 1\} \]

Does the answer equal \(f(x,y) \)?

- Alice receives \(x \) and Bob receives \(y \)
- Alice sends a message to Bob
- Bob sends a message to Alice
- Bob produces an answer
Multi-Round vs. One-Way Communication

Does the answer equal $f(x, y)$?

Multi-Round Communication:

- Alice receives x and Bob receives y
- Alice sends a message to Bob
- Bob sends a message to Alice
- Bob produces an answer
Multi-Round vs. One-Way Communication

Does the answer equal $f(x, y)$?

One-Way Communication:

- **Alice** receives x and **Bob** receives y
- **Alice** sends a message to **Bob**

Bob produces an answer
Multi-Round vs. One-Way Communication

Does the answer equal $f(x, y)$?

One-Way Communication:

$$x \in X \rightarrow y \in Y$$

Multi-Round Communication:

$$x \in X \rightarrow \ldots \rightarrow y \in Y$$
Simultaneous Message Passing (SMP) Communication Model

\[f : X \times Y \to \{0, 1\} \]

- \textit{Alice} receives \(x \) and sends a message to the \textit{referee}
- (at the same time) \textit{Bob} receives \(y \) and sends a message to the \textit{referee}
Simultaneous Message Passing (SMP) Communication Model

\[f : X \times Y \rightarrow \{0, 1\} \]

- Alice receives \(x \) and sends a message to the referee
- (at the same time) Bob receives \(y \) and sends a message to the referee
 - the referee reads the messages and produces an answer
Simultaneous Message Passing (SMP) Communication Model

\[f : X \times Y \rightarrow \{0, 1\} \]

Does the answer equal \(f(x, y) \)?

- Alice receives \(x \) and sends a message to the referee
- (at the same time) Bob receives \(y \) and sends a message to the referee
- the referee reads the messages and produces an answer
How to Compare Models (One Classical Example)
How to Compare Models (One Classical Example)

Communication complexity of a problem is the minimum amount of bits that have to be sent by the players in order to solve the problem with good probability.

Usually, the communication complexity of a problem is expressed as a function of the input length.
How to Compare Models (One Classical Example)

- **Communication complexity** of a problem is the minimum amount of bits that have to be sent by the players in order to solve the problem with good probability.

 Usually, the communication complexity of a problem is expressed as a function of the input length.

- **Indexing function**: Alice receives $x \in \{0, 1\}^n$, Bob receives $i \in \{1, \ldots, n\}$. Bob must output x_i.

How to Compare Models (One Classical Example)

- **Communication complexity** of a problem is the minimum amount of bits that have to be sent by the players in order to solve the problem with good probability. Usually, the communication complexity of a problem is expressed as a function of the input length.

- **Indexing function:** Alice receives $x \in \{0,1\}^n$, Bob receives $i \in \{1,\ldots,n\}$. Bob must output x_i.

 - **Multi-round protocol:** Bob sends to Alice i, she responds with x_i; that costs $O(\log n)$ bits.
How to Compare Models (One Classical Example)

- **Communication complexity** of a problem is the minimum amount of bits that have to be sent by the players in order to solve the problem with good probability. Usually, the communication complexity of a problem is expressed as a function of the input length.

- **Indexing function**: Alice receives $x \in \{0, 1\}^n$, Bob receives $i \in \{1, \ldots, n\}$. Bob must output x_i.

- **Multi-round protocol**: Bob sends to Alice i, she responds with x_i; that costs $O(\log n)$ bits.

- **One-way lower bound**: A single message which would let Bob know any of n mutually independent bits of x with probability $1/2 + \Omega(1)$ must contain $\Omega(n)$ bits.
How to Compare Models (One Classical Example)

- **Communication complexity** of a problem is the minimum amount of bits that have to be sent by the players in order to solve the problem with good probability.
 Usually, the communication complexity of a problem is expressed as a function of the input length.

- **Indexing function**: Alice receives $x \in \{0, 1\}^n$, Bob receives $i \in \{1, \ldots, n\}$. Bob must output x_i.

- **Multi-round protocol**: Bob sends to Alice i, she responds with x_i; that costs $O(\log n)$ bits.

- **One-way lower bound**: A single message which would let Bob know any of n mutually independent bits of x with probability $1/2 + \Omega(1)$ must contain $\Omega(n)$ bits.

- Therefore, **multi-round communication can be exponentially more efficient than one-way communication**.
Quantum Communication Complexity
Quantum Communication Complexity

- Most classical communication models under investigation have natural quantum analogues.
Quantum Communication Complexity

- Most classical communication models under investigation have natural quantum analogues.

 In quantum models, both communication and local operations of the parties are governed by the laws of quantum mechanics.
Quantum Communication Complexity

- Most classical communication models under investigation have natural quantum analogues.
- In quantum models, both communication and local operations of the parties are governed by the *laws of quantum mechanics*.

▶ All (reasonable) quantum models are at least as strong as their classical analogues.
Quantum Communication Complexity

- Most classical communication models under investigation have natural quantum analogues.
- In quantum models, both communication and local operations of the parties are governed by the *laws of quantum mechanics*.
- All (reasonable) quantum models are at least as strong as their classical analogues.
 - Both quantum and classical communication can be amplified by *shared entanglement*.
Previous and New Results

- An exponential separation between *multi-round* quantum and classical communication models was given by Raz [R99].
Previous and New Results

- An exponential separation between *multi-round* quantum and classical communication models was given by Raz [R99].
- An exponential separation between *one-way* quantum and classical models was given by Bar-Yossef, Jayram and Kerenidis [BJK04].
Previous and New Results

- An exponential separation between *multi-round* quantum and classical communication models was given by Raz [R99].
- An exponential separation between *one-way* quantum and classical models was given by Bar-Yossef, Jayram and Kerenidis [BJK04].
- In [G07] it was demonstrated that there existed a communication task that was *exponentially easier to solve in the one-way quantum model than in the multi-round classical model.*
Previous and New Results

- An exponential separation between *multi-round* quantum and classical communication models was given by Raz [R99].
- An exponential separation between *one-way* quantum and classical models was given by Bar-Yossef, Jayram and Kerenidis [BJK04].
- In [G07] it was demonstrated that there existed a communication task that was *exponentially easier to solve in the one-way quantum model than in the multi-round classical model.*

Our main result: There exists a communication task that is exponentially easier to solve in the SMP model with classical communication and shared entanglement than in the multi-round classical model. In fact, our separation also subsumes that from [G07].
Previous and New Results

- An exponential separation between *multi-round* quantum and classical communication models was given by Raz [R99].
- An exponential separation between *one-way* quantum and classical models was given by Bar-Yossef, Jayram and Kerenidis [BJK04].
- In [G07] it was demonstrated that there existed a communication task that was \textit{exponentially easier to solve in the one-way quantum model than in the multi-round classical model}.

\textbf{Our main result:} There exists a communication task that is exponentially easier to solve in the SMP model with classical communication and shared entanglement than in the multi-round classical model. In fact, our separation also subsumes that from [G07].

\textbf{Our second result:} There exists a nonlocality game that is “robust” against $n^{\Omega(1)}$ communication between unentangled players.
Previous and New Results

- An exponential separation between *multi-round* quantum and classical communication models was given by Raz [R99].
- An exponential separation between *one-way* quantum and classical models was given by Bar-Yossef, Jayram and Kerenidis [BJK04].
- In [G07] it was demonstrated that there existed a communication task that was *exponentially easier to solve in the one-way quantum model than in the multi-round classical model*.

Our main result: *There exists a communication task that is exponentially easier to solve in the SMP model with classical communication and shared entanglement than in the multi-round classical model.* In fact, our separation also subsumes that from [G07].

Our second result: *There exists a nonlocality game that is “robust” against $n^\Omega(1)$ communication between unentangled players.*

These two results give almost the strongest possible (and the strongest known) indication of nonlocal properties of two-party entanglement.
Our Communication Task
Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed $1..n$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,5</td>
<td>3,8</td>
</tr>
<tr>
<td>2</td>
<td>4,7</td>
<td>2,6</td>
</tr>
</tbody>
</table>
Our Communication Task

Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed $1..n$.

Alice knows the elements of each row.
Our Communication Task

- Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed $1..n$.
- Alice knows the elements of each row.
- Bob knows the elements of each column.
Our Result: Classical Interaction Cannot Replace Nonlocality

Our Communication Task

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,5</td>
<td>3,8</td>
</tr>
<tr>
<td>2</td>
<td>4,7</td>
<td>2,6</td>
</tr>
</tbody>
</table>

1,3, 5,8
2,4, 6,7
1,4,5,7
2,3,6,8

\[(2, 2),\]

- Integers 1..2n^2 are placed in an \(n \times n\) table, two numbers in every cell; the columns are indexed 1..n.
- Alice knows the elements of each row.
- Bob knows the elements of each column.
- Bob has to choose a cell, and to output a number orthogonal to the bit-wise xor of its two elements.
Our Result: Classical Interaction Cannot Replace Nonlocality

Our Communication Task

- Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed $1..n$.
- Alice knows the elements of each row.
- Bob knows the elements of each column.
- Bob has to choose a cell, and to output a number orthogonal to the bit-wise xor of its two elements.

\[(2, 2), 1010\] is a valid answer.
Our Communication Task

Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed $1..n$.

- Alice knows the elements of each row.
- Bob knows the elements of each column.

- Bob has to choose a cell, and to output a number orthogonal to the bit-wise xor of its two elements.
Our Result: Classical Interaction Cannot Replace Nonlocality

Our Communication Task

Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed $1..n$.

Alice knows the elements of each row.

Bob knows the elements of each column.

Bob has to choose a cell, and to output a number orthogonal to the bit-wise xor of its two elements.
Communication Complexity of Our Task

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,5</td>
<td>3,8</td>
</tr>
<tr>
<td>2</td>
<td>4,7</td>
<td>2,6</td>
</tr>
</tbody>
</table>

\[
4 = 0100 \oplus 0111 = \overline{0011} \perp 0011
\]

- \((2, 2), 1010\) is a valid answer
- \((2, 2), 0001\) is another valid answer
- \((2, 1), 0011\) is valid too

- It can be solved by a **SMP protocol of cost \(O(\log n)\) with classical communication and shared entanglement.**

Our Result: Classical Interaction Cannot Replace Nonlocality
Our Communication Task
Our Result: Classical Interaction Cannot Replace Nonlocality

Communication Complexity of Our Task

It can be solved by a SMP protocol of cost \(O(\log n) \) with classical communication and shared entanglement.

- It requires \(\tilde{\Omega}(n^{1/4}) \) communication in the classical multi-round model. (Note that \(n = \sqrt{[input size]} \)).
Efficient Protocol in SMP with Shared Entanglement

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>3,8</td>
</tr>
<tr>
<td>4,7</td>
<td>2,6</td>
</tr>
</tbody>
</table>

1 \, \, 2

\langle 1, 1 \rangle + \langle 2, 2 \rangle + \langle 3, 3 \rangle + \langle 4, 4 \rangle + \langle 5, 5 \rangle + \langle 6, 6 \rangle + \langle 7, 7 \rangle + \langle 8, 8 \rangle

▶ Alice and Bob share the state $\sum_{t \in [2^n]^2} |t, t\rangle$.

D. Gavinsky (NEC Labs) Interaction vs. Nonlocality

Our Result: Classical Interaction Cannot Replace Nonlocality Efficient Protocol in SMP with Shared Entanglement

10 / 16
Efficient Protocol in SMP with Shared Entanglement

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>3,8</td>
</tr>
<tr>
<td>4,7</td>
<td>2,6</td>
</tr>
</tbody>
</table>

- Alice and Bob share the state $\sum_{t \in [2n^2]} |t, t\rangle$.
- Alice projects her part of the shared state to the subspace spanned by the elements of one of the rows.
Efficient Protocol in SMP with Shared Entanglement

- Alice and Bob share the state $\sum_{t \in [2n^2]} |t, t\rangle$.
- Alice projects her part of the shared state to the subspace spanned by the elements of one of the rows.
- Bob does the same for columns.
Our Result: Classical Interaction Cannot Replace Nonlocality

Efficient Protocol in SMP with Shared Entanglement

- Alice and Bob share the state $\sum_{t \in [2n^2]} |t, t\rangle$.
- Alice projects her part of the shared state to the subspace spanned by the elements of one of the rows.
- Bob does the same for columns.
- They end up with $|a, a\rangle + |b, b\rangle$, where $\{a, b\}$ is the content of a cell (i_0, j_0).

Table

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1,5</td>
<td>3,8</td>
</tr>
<tr>
<td>4,7</td>
<td>2,6</td>
</tr>
</tbody>
</table>

$|2, 2\rangle + |6, 6\rangle$
Efficient Protocol in SMP with Shared Entanglement

- Alice and Bob share the state $\sum_{t \in [2n^2]} |t, t\rangle$.
- Alice projects her part of the shared state to the subspace spanned by the elements of one of the rows.
- Bob does the same for columns.
- They end up with $|a, a\rangle + |b, b\rangle$, where \{a, b\} is the content of a cell (i_0, j_0).

Both Alice and Bob locally apply the Hadamard transform, measure the result in the computational basis and send the outcome, together with (i_0, j_0), to the referee.
Efficient Protocol in SMP with Shared Entanglement

Alice and Bob share the state $\sum_{t \in [2n^2]} |t, t\rangle$.

Alice projects her part of the shared state to the subspace spanned by the elements of one of the rows.

Bob does the same for columns.

They end up with $|a, a\rangle + |b, b\rangle$, where $\{a, b\}$ is the content of a cell (i_0, j_0).

Both Alice and Bob locally apply the Hadamard transform, measure the result in the computational basis and send the outcome, together with (i_0, j_0), to the referee.

That information is sufficient to produce a correct answer.
Classical Solution is Expensive: The First Reduction

Claim

Assume that a protocol of cost k solves the original problem with small error. Then another protocol of similar cost solves the 1×1-version with probability $\frac{1}{n}$ with small error.
Classical Solution is Expensive: The First Reduction

Claim

Assume that a protocol of cost k solves the original problem with small error. Then another protocol of similar cost solves the 1×1-version with probability $\frac{1}{n}$ with small error.

The proof is not “completely trivial”.

Our Result: Classical Interaction Cannot Replace Nonlocality

Lower Bound for Classical Multi-Round Protocols
Our Result: Classical Interaction Cannot Replace Nonlocality

Lower Bound for Classical Multi-Round Protocols

Classical Solution is Expensive: The Second Reduction

\[
2 = 0010 \\
6 = 0110 \oplus \\
0100 \perp 1010
\]

Claim

Assume that a protocol of cost \(k \) solves the 1x1-version of the problem with probability \(\frac{1}{n} \) with small error. Then another protocol of similar cost solves the search 1x1-version of the problem with probability \(\frac{1}{nk^2 \log^2(n)} \).
Claim

Assume that a protocol of cost k solves the 1x1-version of the problem with probability $\frac{1}{n}$ with small error. Then another protocol of similar cost solves the search 1x1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$.

The proof is combinatorial, technical.
Complexity of the Search 1x1-Version

To solve the problem with constant probability, we need $\Omega(n)$ bits of communication.
Our Result: Classical Interaction Cannot Replace Nonlocality

Complexity of the Search 1x1-Version

- To solve the problem with constant probability, we need $\Omega(n)$ bits of communication.
 - If we are allowed *only k bits of communication*, we can find *one element* of the intersection with probability $O\left(\frac{k}{n}\right)$;
Complexity of the Search 1x1-Version

- To solve the problem with constant probability, we need $\Omega(n)$ bits of communication.

 - If we are allowed only k bits of communication, we can find one element of the intersection with probability $O\left(\frac{k}{n}\right)$;
 - our chances to find both elements are $O \left(\left(\frac{k}{n}\right)^2 \right)$.

Our Result: Classical Interaction Cannot Replace Nonlocality

Lower Bound for Classical Multi-Round Protocols

D. Gavinsky (NEC Labs)

Interaction vs. Nonlocality
Complexity of the Search 1x1-Version

To solve the problem with constant probability, we need $\Omega(n)$ bits of communication.

If we are allowed only k bits of communication, we can find one element of the intersection with probability $O\left(\frac{k}{n}\right)$; our chances to find both elements are $O\left((\frac{k}{n})^2\right)$.

Another combinatorial proof.
Classical Solution is Expensive: Lower Bound Summary

- If a protocol of cost k solves the *original problem* with small error, then another protocol of similar cost solves the 1×1-version with probability $\frac{1}{n}$ with small error.
Classical Solution is Expensive: Lower Bound Summary

- If a protocol of cost k solves the original problem with small error, then another protocol of similar cost solves the 1×1-version with probability $\frac{1}{n}$ with small error.

- If a protocol of cost k solves the 1x1-version of the problem with probability $\frac{1}{n}$ with small error, then another protocol of similar cost solves the search 1x1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$.

Our Result: Classical Interaction Cannot Replace Nonlocality

Lower Bound for Classical Multi-Round Protocols
Classical Solution is Expensive: Lower Bound Summary

- If a protocol of cost k solves the *original problem* with small error, then another protocol of similar cost solves the 1×1-version with probability $\frac{1}{n}$ with small error.

- If a protocol of cost k solves the 1×1-version of the problem with probability $\frac{1}{n}$ with small error, then another protocol of similar cost solves the *search 1×1-version* of the problem with probability $\frac{1}{nk^2 \log^2(n)}$.

- The chances of a protocol of cost k to solve the search 1×1-version are $O \left(\left(\frac{k}{n} \right)^2 \right)$.
Classical Solution is Expensive: Lower Bound Summary

- If a protocol of cost k solves the original problem with small error, then another protocol of similar cost solves the 1×1-version with probability $\frac{1}{n}$ with small error.

- If a protocol of cost k solves the 1×1-version of the problem with probability $\frac{1}{n}$ with small error, then another protocol of similar cost solves the search 1×1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$.

- The chances of a protocol of cost k to solve the search 1×1-version are $O \left(\left(\frac{k}{n} \right)^2 \right)$.

- This gives us the required $k \in \tilde{\Omega} \left(n^{1/4} \right)$.
Open Problems
Open Problems

- Is it possible to find a *functional* problem that requires exponentially more expensive protocol in \mathcal{R} than in Q^1?
Is it possible to find a \textit{functional} problem that requires exponentially more expensive protocol in \mathcal{R} than in Q^1?

N.B. The question is open both for \textit{complete} and for \textit{partial} functions.
Open Problems

- Is it possible to find a *functional* problem that requires exponentially more expensive protocol in \mathcal{R} than in Q^1?

 N.B. The question is open both for *complete* and for *partial* functions.

- Can *SMP with quantum communication but without entanglement* be (exponentially) stronger than classical interactive protocols?
Open Problems

- Is it possible to find a *functional* problem that requires exponentially more expensive protocol in \mathcal{R} than in Q^1?

 N.B. The question is open both for *complete* and for *partial* functions.

- Can *SMP with quantum communication but without entanglement* be (exponentially) stronger than classical interactive protocols?

- Can shared entanglement have any advantages over *quantum* interactive (or even one-way) communication?
Thank you!