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Zero-Knowledge Proof Systems

Assume that a promise problem A = (A, Ano) has been fixed. A
zero-knowledge proof system for the problem A is a pair (V, P) of
interacting parties; a (computationally bounded) verifier and a prover.
Interaction:

Both parties receive an input string x € Ayes U Ao, €Xchange

messages with one another, and finally the verifier V produces an
output string denoted (V, P)(x).

Conditions:

Completeness: If x € Ayes, then it must be the case that (V,P)(x) =1
(accept) with high probability.

Soundness: If x € Ao, then it must be the case that (V,P’)(x) =0
(reject) with high probability for every possible cheating prover P’.

Zero-knowledge: If x € Ayes, then no cheating verifier V'’ can extract
knowledge from an interaction with P.
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What does it mean to “extract knowledge”?

The notion of knowledge is a complexity-theoretic notion, and is different
from information; it is formalized by means of the simulator paradigm.

Informally: a verifier V' learns nothing (i.e., fails to extract knowledge)
from P if there exists a polynomial-time simulator S that produces an
output that is indistinguishable from the output V'’ would produce when
interacting with P on any x € Ayes:

X X
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Auxiliary inputs

The previous informal definition is not quite strict enough to capture the
notion of zero-knowledge, and gives rise to a class of protocols lacking
certain desirable properties. ..

We need to allow the cheating verifier V'’ (as well as the simulator S) to
take an auxiliary input string w. The outputs of these two processes
should be indistinguishable provided x € Ayes:

w X w X

| |

Vil——| P S

| |
| |

(V'(w), P)(x) S(x,w)
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Auxiliary inputs

This auxiliary input definition captures the idea that zero-knowledge
proofs should not increase knowledge, and is closed under sequential
composition.

Definition of Zero-Knowledge (classical)

An interactive proof system (P, V) for a given problem A = (Ayes, Ano) iS
zero-knowledge if, for every polynomial-time verifier V' there exists a
polynomial-time simulator S such that, for every w and x € A s,

(V/(w),P)(x) and S(x,w)

are indistinguishable* [GoLbwAsSER, MiCALI & RACKOFF, 1989].

* Different notions of indistinguishability give rise to different variants of zero-knowledge,
such as statistical and computational zero-knowledge.
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Quantum version of the definition

Suppose that some verifier V' tries to use quantum information to extract
knowledge from P. (Note that the prover P is still classical, so the input x
and any information exchanged between V' and P must be classical.)

The interaction between V' and P on input x induces some admissible
mapping on the auxiliary input:

P X
|
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Quantum version of the definition

If P is zero-knowledge even against a verifier V'’ that uses quantum
information, then there should exist a simulator S that performs an
admissible mapping ¥ on the auxiliary input that is indistinguishable
from @, (when x € Aye):

p X P X
\
{
V/ - P S
\
| |
D (p) Yy (p)
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Problem with the quantum definition?

These definitions are fairly straightforward. . . but have been considered
problematic for several years. (The problem was apparently first identified
by Jeroen van de Graaf in his 1997 PhD thesis.)

The problem: No nontrivial protocols were previously shown to be
zero-knowledge with respect to these definitions, even protocols already
proved zero-knowledge in the classical setting.

In order to describe the problem, it will be helpful to consider a simple and
well-known zero-knowledge proof system for the Graph Isomorphism
problem:

Input: Two graphs Gy and G; (given by adjacency matrices).

Yes: Go and G are isomorphic (Gy = Gy).

No: Go and Gy are not isomorphic (Gg # G1).
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A zero-knowledge proof system for Graph Isomorphism

The following protocol (described for honest parties) is a zero-knowledge
protocol for Graph Isomorphism [GoLbRrEicH, MiCALI & WIDGERSON, 1991].

The GMW Graph Isomorphism Protocol

Assume the input is a pair (Gg, G1) of n-vertex graphs. Let 0 € S,, be a
permutation satisfying 0(G1) = Gg if Gg = G1, and let o be arbitrary
otherwise.

Prover’s step 1: Choose 7t € S,, uniformly at random and send
H = 7t(Gg) to the verifier.

Verifier's step 1: Choose a € {0, 1} randomly and send a to the prover.
(Implicit: challenge prover to show H = G.)

Prover’s step 2: Let T = to® and send T to the verifier.

Verifier's step 2: Accept if T(G,) = H, reject otherwise.

Sequential repetition reduces soundness error. ..
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Zero-knowledge property for the GMW protocol

The completeness and soundness properties are straightforward. Let us
consider the zero-knowledge property. ..

Consider a classical cheating verifier V’:

Verifier’s step 1: Perform some arbitrary polynomial-time computation
on (Gg, G1), auxiliary input w, and H to obtain a € {0, 1}. Send a to P.

Verifier's step 2: Perform some arbitrary polynomial-time computation
on (Gg, G1), auxiliary input w, H, and T to produce output.

Simulator for V':
1. Choose b €{0,1} and T € S,, uniformly, and let H = t(Gy,).

2. Simulate whatever V' does given prover message H. Let a denote
the resulting message back to the prover.

3. If a # b then rewind: go back to step 1 and try again.

4. Output whatever V'’ would after receiving T.
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Simulator for a cheating quantum verifier?

Suppose that we have a cheating quantum verifier V' that starts the
protocol with an auxiliary quantum register W.

Verifier's step 1: Perform some arbitrary polynomial-time quantum

computation on (Gg, G1), auxiliary input register W, and H to obtain
a€{0,1}. Send ato P.

For example: let a be the outcome of some binary-valued
projective measurement {TT5!, TTH1 of W that depends on H. J

Verifier's step 2: Perform some arbitrary polynomial-time quantum
computation to produce an output.

How can we simulate such a verifier?
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The “no quantum rewinding” issue

Two principles are working against us:

e The no cloning theorem prevents making a copy of the auxiliary
input register’s state.
e Measurements are irreversible.

Suppose that we randomly choose b and 1, and let H = t(Gy,) as for our
simulator before. If the simulator guesses incorrectly (meaning a # b),
then the original state of W may not be recoverable.

“Rewinding by reversing the unitary transformation induced by
[the verifier], or taking snapshots is impossible.

But. . . showing that rewinding by reversing or by taking
shapshots is impossible does not show that no other ways to
rewind in polynomial time exist.”

[VAN DE GRAAF, 1997]
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New results

In the remainder of this talk | will argue that the GMW Graph Isomorphism
protocol is indeed zero-knowledge against quantum verifiers:

e For any quantum verifier V', there exists a simulator S that induces
precisely the same admissible mapping as the interaction between V'’
and P (on a “yes” input to the problem).

e The method gives a way to “rewind” the simulator, but it requires more
than just reversing the verifier's actions. (The entire simulation will be
guantum, even though the prover is classical.)

e The method generalizes to several other protocols (but | will only
discuss the Graph Isomorphism example in this talk for simplicity).
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Assumptions on V'’

Assume V'’ uses three registers:

W: stores the auxiliary input.
V: represents workspace of arbitrary size.
A: single qubit representing the message sent by V.

Register W starts in the auxiliary state, and registers V and A are
initialized to all zeroes.

Assume V' operates as follows:

e For each graph H on n vertices, V' has a corresponding unitary
transformation Vy that acts on (W, V, A).

e Upon receiving H from P, the V'’ applies Vi to (W, V, A), measures
A in the standard basis, and sends the result a to P.

e After P responds with some permutation t, V'’ simply outputs
(W, V, A) along with the prover messages H and .
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Simulator construction

The simulator will use registers W, V, and A along with:

P1: stores the prover’s first message.

B: stores the simulator's guess b for a.

P,: stores the prover’'s second message.

R: stores “randomness” used to generate transcripts.

Define a unitary operator V on (W, V, A, P) that represents a unitary
realization of V’:

V=> Vy®H) H|.
H
Define T to be a unitary operation on registers (P, B, P, R) for which
1
T:100---0) — — (G b) |T)|b,T).
| ) @—n!;'( b)) Ib) I7) [b, )

The operation T produces a superposition over transcripts.
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Simulator construction

Now define the simulator as follows:
1. Perform T, followed by V.

2. Perform a measurement {TTg, TT; } whose outcome corresponds to the
XOR of A and B (in the computational basis).

3. If the measurement outcome is 1, we need to rewind and try again:

e Perform V* followed by T*.

e Perform a phase flip in case any of the qubits in any of the
registers (V, A, P1,B, P>, R) is setto 1 (i.e., perform 2A —1,
where A = Iy ®/00---0) (00---0[.)

e Perform T followed by V.

4. Output registers (W, V, A, P1, P»). (Registers B and R are traced out.)
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Analysis of simulator

Assume that the auxiliary input is \b), and x = (G, G1) for Go = Gj. Let

l¢) =p)[00---0)
be the state of all registers given this input.

The simulator performs T, then V, then measures w.r.t. {TTg, TT}.
Assuming Gy = G1, the outcome will always be uniformly distributed.

First, suppose that the measurement {ITg, [T, } gives outcome 0. The
resulting state of all registers is

|00) = V2o VT ).
This is the target state: it represents a successful simulation because

trg,r[00) (ool = @ () (WI).

(Nothing is surprising here. . .the simulator has been lucky and didn’t need
to rewind.)
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Analysis of simulator

Suppose on the other hand that the measurement outcome was 1. The
resulting state is

o1) = V2IT VT [g) .
Time to rewind and try again. . .

Performing the “rewind and try again” procedure results in the state

VT(2A — DT*V*[oy).

VT(2A —1)T*V*|o1) =|op) (the target state).

Note: this would not happen for arbitrary choices of [@), V, T, TTg, TTy,
etc. . .the claim relies on the fact that the measurement {TTg, IT;} gives
outcome 0 and 1 with equal probability for all choices of ).
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Proof of claim

The fact that the measurement {TTg, TT;} gives outcomes 0 and 1 with equal
probability for all choice of \p) implies

1
AT*V*TIgVTA = AT*V*TI; VTA = EA.

Therefore

(0o[VT(2A — D)T*V*|oy)
=2 (@[T*V*TToVT(2A — DT*V*TTI; VT )
=4 (@[T*V*TIoVTAT*V*TT; VT @)
— 2{[T*V*TIoVTT*V*TT; VT )
=4 (Q|AT*V*TIoVTAT*V*TTI; VTA| @)
= (@lAl@)
=1,

0 VT(2A — )T*V* |oy) = |op).
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Analysis of simulator

This establishes that the admissible map ¥ agrees with the map ©
corresponding to the actual interaction on all pure state auxiliary inputs:

V() (l) = @ () ()
for all [{p).

Admissible maps are completely determined by their actions on pure
state inputs, however, so
Y =0@O:

the simulator agrees precisely with the actual interaction on every
possible state of the auxiliary input register (including the possibility it is
entangled with another register).
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Other protocols

The simulation method just described can be adapted to prove several
other protocols are zero-knowledge against quantum attacks, including:

e Quantum protocols for any problem having an honest verifier
guantum statistical zero-knowledge proof system:

QSZK = QSZKpy.

¢ The Goldreich-Micali-Wigderson Graph 3-Coloring protocol
assuming unconditionally binding and quantum computationally
concealing bit commitments. (See [Abcock & CLEVE, 2002].)

e Presumably several other proof systems. ..

Adapting the simulator to other protocols may require iterating the “rewind
and try again” process.
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Future work/open questions

1. Find further applications and generalizations of the method.
2. ldentify limitations of the method.

3. Identify good candidates for quantum one-way permutations.
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