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Part I:
Statement of the results.
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Hidden subgroup problem (HSP)

Given: G: group, S: set, f : G → S via an oracle.

Promise: Subgroup H ≤ G such that f is constant on the left
cosets of H and distinct on different cosets.

Task: Find the hidden subgroup H by querying f .

Example (Factoring integers):
• Given n;
• Choose randomly 1 < a < n, gcd(a, n) = 1;
• Define f : Z → Zn, f (x) := ax mod n;
• H = {rx : x ∈ Z}, r is order of a modulo n;
• Finding r allows us to factor n.
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Importance of HSP

Following important problems reduce to HSP:
• Integer factoring: G = Z;
• Discrete logarithm over p: G = Zp−1 × Zp−1;
• Pell’s equation: G = R;
• Graph isomorphism: G = S2n.

Abelian G: Efficient (polynomial in log |G|) quantum algorithm.

Non-abelian G: General case, OPEN!
Few cases, efficient quantum algorithm.

Most super-polynomial speedups obtained so far by quantum
algorithms fall under HSP framework.
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Graph isomorphism and HSP

Lower bound actually for isomorphism of rigid graphs,
Turing-equivalent to graph automorphism.

Isomorphism of rigid n-vertex graphs reduces to HSP in S2n.

If rigid graphs G0, G1:

Have isomorphism π:
H = {e, (1, n+π(1)) · · · (n, n+π(n))}.
H conjugate to
H0 := {e, (1, n + 1) · · · (n, 2n)}.

Are non-isomorphic:
H = {e}, the identity subgroup.
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Coset state approach for HSP

G: group, H: hidden subgroup in G.

Hidden subgroup coset state:

σH :=
|H|
|G|

∑
g∈G/H

|gH〉〈gH|, where |gH〉 :=
1√
|H|

∑
x∈gH

|x〉.

The procedure:
• Repeat the following steps t times:

1√
|G|

∑
g∈G

|g〉|0〉 7→ 1√
|G|

∑
g∈G

|g〉|f (g)〉 7→ σH ;

• Apply a POVM on σ⊗t
H to identify H with high probability.
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Single-register coset state algorithm

G: group, H: hidden subgroup, σH : coset state of H.

Algorithm measures one copy of σH at a time.

Classical Answer
Postprocessing

Single−register algorithm

(log |G|)O(1)

σH

σH

σH
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Examples of single-register coset state algorithms

G: group, H: hidden subgroup, σH : coset state of H.

Single-register algorithms suffice information theoretically for
the following HSPs:
• Abelian G: Based on quantum Fourier transform over G

and is efficient;
• H normal subgroup of G: Uses weak quantum Fourier

sampling over G;
• Few more examples: G dihedral, affine etc.

Problem: Identify more general classes of (G, H) where single
register algorithms suffice information theoretically for the HSP.
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Ensemble state identification and HSP
S: general ensemble {σi}i of quantum states in Cn.
State identification: Given ` copies of σi ∈ S, identify i .
Coset state approach to HSP: S = {σH}H≤G.

f : minimum pairwise Frobenius distance in S.
Theorem: There is a single register algorithm identifying given
σ ∈ S with ` = O

(
log |S|

f 2

)
copies.

Proof uses ‘random POVMs’.

Corollary: There is a single register algorithm for HSP using
polynomially many copies of σH , if rank of H is polynomially
bounded or full in every irrep of G.

Generalises all previous positive results about single register
algorithms for HSP and gives some new ones e.g. G = Zn

p o Zp.
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Ensemble state identification and PGM

S: general ensemble of quantum states in Cn.
t : minimum pairwise trace distance in S.

Corollary: There is a single register algorithm identifying
given σ ∈ S with ` = O

(
n log |S|

t2

)
copies.

No state identification result for general ensembles known
previously.

The pretty good measurement (PGM) method says nothing
about state identification for general ensembles with large
pairwise trace distance.

Also, PGM typically does not give single register algorithms for
state identification.

10



The single-register HSP algorithm

Rank of H is polynomially bounded or full in every irrep of G.
The algorithm:
Repeat (log |G|)O(1) times:
• Apply QFTG to one copy of σH ;
• Observe the name of an irrep ρ of G;
• Measure using a ‘random POVM’.

Classical postprocessing to determine H.

Definition (Random POVM in Cn): Got by choosing n
independent random unit vectors in Cn and adding a ‘don’t
know’ outcome for completeness.

Theorem: ‖M(σ1)−M(σ2)‖1 ≥ c · ‖σ1−σ2‖F
log n , with prob. at

least 1− exp(−cn), where c > 0 is a universal constant.
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General non-abelian HSP

Fact (Ettinger, Høyer, Knill):

Answer

σH

σH

(log |G|)O(1)

Problem: Above algorithm has running time |G|O(log |G|).

Only positive result known for general non-abelian G!

But it shows quantum query complexity of HSP is polynomial
and uses only coset states of H.

Classically, the query complexity is exponential.
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k -register algorithm for HSP

Algorithm measures at most k copies of σH at a time.

Classical Answer
Postprocessing

(log |G|)O(1)

σH

k
σH

σH

σH

σH

σH

k

k

k -register algorithm

Hope: May give insight into efficient algo. for HSP for (G, H).
Goal: Study info. theoretically how small k can be for (G, H).
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Graph isomorphism and coset state algorithms

Holy grail: How small can k be for G = S2n, H subgroup
relevant for graph isomorphism?

Rank of H is exponentially large but not full for most irreps of G.
In fact, single register random Fourier sampling fails (Grigni,
Schulman, Vazirani, Vazirani).

(Moore, Russell, Schulman): k = 1 impossible.

(Moore, Russell): k = 2 impossible.

Our result: k ≤ 0.08n log n impossible, even if adaptive!

(Ettinger, Høyer, Knill): k = 4n log n possible.
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Part II:
The multi-register lower bound for HSP
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Recall: Graph isomorphism and HSP

Isomorphism of rigid n-vertex graphs reduces to HSP in
Sn o S2 ≤ S2n.

If rigid graphs G0, G1:

2

n

n + π(2)

n + π(1)

G1G0

π1

n + π(n)

Have isomorphism π:
Hidden subgroup
{e, (1, n + π(1)) · · · (n, n + π(n))},
conjugate to
H = {e, (1, n + 1) · · · (n, 2n)}.

Are non-isomorphic:
Hidden subgroup is identity {e}.
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Form of our multi-register lower bound

G: group, H: fixed subgroup {1, h}.
Possible hidden subgroups: Conjugates Hg := gHg−1, g ∈ G
and identity subgroup {1}.

M: POVM on k coset states, MH : prob. dist. on σ⊗k
H .

Theorem: Choose parameter ε, 0 < ε < 0.5k−1. Then,
Eg[‖MHg −M{1}‖1] ≤ 2k f (G, h, ε) =: δ.

If ε can be chosen to make δ exponentially small ⇒ No efficient
log f (G, h, ε)-register algorirthm for HSP.

For some groups like G = Sn o S2, ε can be chosen so that δ is
exponentially small unless k = Ω(log |G|).
For some groups like abelian G, even for k = 1, δ is a constant
for all possible ε.
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Representation theory

G: group.

Representation ρ: Group homomorphism ρ : G → U(d), d is
some positive integer called the dimension of ρ.
Irrep ρ: In above, if no non-trivial subspace of Cd is invariant
under the action of matrices ρ(g), g ∈ G.

Fundamental fact: Every representation ρ is a direct sum of
irreps τ , i.e.,

ρ ∼=
⊕

τ

aρ
ττ,

where aρ
τ is the multiplicity of τ in ρ. Projector Πρ

τ onto ⊕aρ
ττ is

called isotypic projection for τ in ρ.

Character χρ: Function χρ : G → C defined as χρ(g) := Trρ(g).
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The multi-register lower bound theorem

G: group, H: fixed subgroup {1, h}.
Possible hidden subgroups: Conjugates Hg := gHg−1, g ∈ G
and identity subgroup {1}.
M: POVM on k coset states, MH : prob. dist. on σ⊗k

H .

Choose ε, 0 < ε < 0.5k−1.

Ĝ: complete set of inequivalent irreps of G.
Sε :=

{
τ ∈ Ĝ : |χτ (h0)|

dτ
≥ ε
}

, the non-smooth irreps of G.

Dε :=
∑

τ∈Sε
d2

τ .

Then,

Eg[‖MHg
0
−M{1}‖1] ≤ 2k ·

[
4
(
ε + Dε|Ĝ|1/2|G|−1/2

)1/2
]

.
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Proof: wlog do quantum Fourier transform

G: group, H ′: subgroup, M: POVM on k coset states.
Definition (ρ(H ′)): ρ irrep of G, ρ(H ′) := |H ′|−1∑

h′∈H′ ρ(h′).

Quantum Fourier transform QFTG: A unitary transformation:

QFTG : |g〉 7→
∑
ρ,i,j

√
dρ

|G|
· ρij(g) |ρ, i , j〉.

QFTG simultaneously block-diagonalises σH′ for all H ′ ≤ G.

Wlog, POVM M on σ⊗k
H′ respects Fourier block structure, i.e.:

• M applies QFT⊗k
G and measures names of k irreps of G;

• Then, M measures the reduced state ρ1(H ′)⊗ · · · ⊗ ρk (H ′)
normalised by an orthonormal basis B.
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Proof: the view in the Fourier basis

G: group, H: fixed subgroup {1, h}, Hg : conjugate gHg−1.

rank(ρ(H))
dρ

= 1
2

(
1 +

χρ(h)
dρ

)
.

Assume rank(ρ(Hg)) = rank(ρ(H)) = 0.5dρ for all irreps ρ of G.
Factor of 4 takes care of error due to above approximation.

In Fourier basis, Eg[‖MHg −M{1}‖1] = 2k Eρ,b,g[|X (ρ, b, g)|]:
• ρ := ρ1 ⊗ · · · ⊗ ρk , ρi irrep of G;
• Plancherel distribution for ρ, Pr(ρ) := 2−k · d2

ρ1
· · ·d2

ρk
;

• Uniform distribution for b ∈ B, B orthonormal basis of ρ;
• Uniform distribution for g ∈ G;
• X (ρ, b, g) := 〈b |ρ1(Hg)⊗ · · · ⊗ ρk (Hg)|b〉 − 2−k .
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Proof: The second moment comes in

G: group, H: fixed subgroup {1, h}, Hg : conjugate gHg−1.
X (ρ, b, g) := 〈b |ρ1(Hg)⊗ · · · ⊗ ρk (Hg)|b〉 − 2−k .

Aim: Bound Eg[‖MHg −M{1}‖1] = 2k Eρ,b,g[|X (ρ, b, g)|].

Strategy: Eρ,b,g[|X (ρ, b, g)|] ≤
(
Eρ,b,g[X (ρ, b, g)2]

)1/2
.

By Schur’s lemma, Eg[X (ρ, b, g)2] =
∑

τ
χτ (h)

dτ

∥∥∥Πρ⊗ρ
τ (b⊗ b)

∥∥∥2
.

• τ : irrep of G;
• Πρ⊗ρ

τ : isotypic projection for τ in the diagonal
representation ρ⊗ ρ of G.

Little bit of cheating above, should consider pairs of non-empty
subsets of [k ], but morally okay!
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Proof: smooth irreps are no problem

G: group, H: fixed subgroup {1, h}, ε: smoothness parameter.

Eg[X (ρ, b, g)2] =
∑

τ

χτ (h)

dτ

∥∥Πρ⊗ρ
τ (b⊗ b)

∥∥2
.

Recall: For smooth irreps τ , |χτ (h)|
dτ

< ε.

For non-smooth irreps τ ∈ Sε, we will use |χτ (h)|
dτ

≤ 1.

Eg[X (ρ, b, g)2] < ε +
∑
τ∈Sε

∥∥Πρ⊗ρ
τ (b⊗ b)

∥∥2
.

Technical challenge: Bound
∥∥∥Πρ⊗ρ

τ (b⊗ b)
∥∥∥2

for non-smooth
irreps τ of G.
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Proof: apply isotypic projection formula

Moore, Russell and Schulman bounded
∥∥∥Πρ⊗ρ

τ (b⊗ b)
∥∥∥2

for
non-smooth τ by a geometric dimension counting argument.

That argument fails for k ≥ 3 when G = Sn o S2 and H is a
subgroup relevant to graph isomorphism.

Our idea: Use the fact that Πρ⊗ρ
τ is an isotypic projection and it

is applied to b⊗ b.

Fact (Isotypic projection): Πρ⊗ρ
τ = dτ Eg[χτ (g)∗ · (ρ⊗ ρ)(g)].

Eg[X (ρ, b, g)2] < ε +

(∑
τ∈Sε

d2
τ

)(
Eg

[
|〈b |ρ(g)|b〉|2

])
.
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Proof: apply Schur normalisation

Eρ,b,g[X (ρ, b, g)2] < ε +

(∑
τ∈Sε

d2
τ

)(
Eρ,b,g

[
|〈b |ρ(g)|b〉|2

])
.

Our next idea:
• Decompose ρ into isotypic components of ν, ν irreps of G.
• Schur normalisation: Eg[| 〈b |ν(g)|b〉 |2] = 1

dν
, for any

irrep ν of G and any vector b in ν.

We also use a lemma by Moore and Russell bounding
expected multiplicities of irrep ν in isotypic decomposition of ρ.

Fact (Moore-Russell): Eρ

[
aρ

ν
dν

]
= dν

|G| .
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Proof: bounding contribution of non-smooth irreps

Finally, we require Moore, Russell and Schulman’s original
geometric argument of counting dimensions.

Fact: If W is a subspace of V and b is chosen uniformly from
an orthonormal basis for V ,

Eb

[∥∥∥ΠV
W (b)

∥∥∥2
]

=
dim W
dim V

.

Putting everything together:

Eρ,b,g

[
|〈b |ρ(g)|b〉|2

]
≤
∑

ν

dν

|G|
.
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Proof: finally!

Ĝ: set of irreps of G, Sε :=
{

τ : |χτ (h)|
dτ

≥ ε
}

. Dε :=
∑

τ∈Sε
d2

τ .

The main result:

Eg[‖MHg −M{1}‖1]

= 2k · 4 · Eρ,b,g[|X (ρ, b, g)|] . . . rank(ρ(H)) = 0.5dρ approx.

≤ 2k · 4 ·
(

Eρ,b,g[X (ρ, b, g)2]
)1/2

≤ 2k · 4 ·

(
ε +

(∑
τ∈Sε

d2
τ

)(
Eρ,b,g

[
|〈b |ρ(g)|b〉|2

]))1/2

≤ 2k · 4 ·

(
ε + Dε

(∑
ν

dν

|G|

))1/2

≤ 2k · 4 ·
(
ε + Dε|Ĝ|1/2|G|−1/2

)1/2
. . . Cauchy-Schwarz.
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Lower bound for graph isomorphism

The main result:

Eg[‖MHg −M{1}‖1] ≤ 4 · 2k ·
(
ε + Dε|Ĝ|1/2|G|−1/2

)1/2
.

Applying this result with ε := n−0.2n for G = Sn o S2 and
H = {e, (1, n + 1) · · · (n, 2n)} gives:

Eg[‖MHg −M{1}‖1] ≤ 2k · 4 · n−0.09n.

This implies that any efficient k -register coset state algorithm
for graph isomorphism requires k > 0.08n log n!
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Part III:
Discussion.
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Importance of rank of hidden subgroup

Want: k -register information theoretic algorithm for HSP for
(G, H) using only polynomially many coset states of H.

For ‘most’ irreps ρ of G, if rank of ρ(H) is:
• Polynomially bounded or full: k = 1 suffices by single

register random Fourier sampling.
• Exponential but not full: Examples like graph isomorphism

and some more groups where k = Ω(log |G|) required.
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Random POVMs and questions of efficiency

Generating a single random vector is provably inefficient for a
quantum computer!

Unclear how to efficiently postprocess the classical information
got from single-register random Fourier sampling.

Leads us to the open question of efficient pseudo-random
measurement bases!

Pseudo-random unitary model of Emerson et al. seems
inadequate for our purposes.
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Further research

More techniques for designing multi-register algorithms.

Examples:
• Clebsch-Gordan pairing method of Kuperberg for HSP in

the dihedral group;
• Pretty good measurement method of Bacon, Childs and

van Dam for HSP in the Heisenberg group;
• Missing harmonic idea of Moore and Russell for

isomorphism of rigid graphs.
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Important research project

Find new paradigms for designing HSP algorithms that go
beyond using just coset states of the hidden subgroup H.

Main known paradigm: Orbit coset framework with Friedl,
Ivanyos, Magniez and Santha.
• Uses coset states of subgroups NH, where N ranges over

various normal subgroups of G, instead of just coset states
of the hidden subgroup H;

A curious example: The group (S4)
n.

• Our methods show any algorithm for HSP in (S4)
n using

only coset states of H needs k = Ω(n);
• Orbit coset framework gives an efficient Θ(n)-register

algorithm for HSP in (S4)
n, but uses coset states of NH.

• Only known example of a group with an efficient HSP
algorithm where one can prove k = Ω(log |G|).
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The challenging open problem!

Efficient quantum algorithm for graph isomorphism.

Only non-HSP quantum idea for graph isomorphism to date is
based on creating the uniform superposition of all graphs
isomorphic to a given graph.

Aharonov and Ta-Shma have proposed creating this
superposition by quantum sampling a Markov chain, however,
very little is known about this approach.
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Thank you!
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