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Fault-tolerant, largerC

 High tolerable noise
 Low overhead

Quantum fault-tolerance problem
– Classical fault-tolerance: Von Neumann (1956)
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Important problem!

Quantum fault-tolerance problem
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Intuition

• Aharonov & Ben-Or (‘97), Kitaev (‘97), Knill-Laflamme-Zurek (‘97)
– Using concatenated constant-sized code, tolerate constant error

• Quantum fault-tolerance: Shor (1996)
– Using poly(log N)-sized code, tolerate 1/poly(log N) error

 Work on encoded data
 Correct errors to prevent spread
 Concatenate procedure for arbitrary reliability
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Stabilizer op.
fault-tolerance

Universal
fault-tolerance

Recent results
 Magic states distillation [Bravyi & Kitaev ‘04, Knill ‘04]

– Universality method, related to best current threshold upper bounds
– Reduction

B



 Magic states distillation [Bravyi & Kitaev ‘04, Knill ‘04]
– Universality method, related to best current threshold upper bounds
– Reduction from FT universality to FT stabilizer operations

 Optimized fault-tolerance schemes: [Knill ‘03]
– Erasure error threshold is 1/2 for Bell measurements
– [Knill ‘05]: > 5% estimated threshold for depolarizing noise

Recent results

1% with substantial but more reasonable overhead

Fault-tolerance threshold myth: 
Threshold is all that counts.

Maximize the threshold at all costs.
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 Advantages
– Efficient
– Technical advantage: Reduces blockwise
independence to encoded Bell state
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– Efficient
– Technical advantage: Reduces blockwise
independence to encoded Bell state
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 Advantages
– Efficient
– Technical advantage: Reduces blockwise
independence to encoded Bell state
– Allows for more checking

 Disadvantages
– High overhead at high error rates
with error detection
– Renormalization penalty requires
stronger control over error distribution
– No threshold has been proved to
exist

+ Distance-two code
+ Postselection



… …

w/ prob. 1-q w/ prob. q

Main issues
 Bounded dependencies

– Between different blocks
– In time
– Between bit errors and logical errors

 Example:

(1-q) .97n q .99naccepted w/ prob.

3% bit error rate 1% bit error rate

⇒ Probability of logical error increases exponentially!



 Bounded dependencies
– Between bit & logical errors
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Main issues …
w/ prob. 1-q

3% bit error rate

…
w/ prob. q

1% bit error rate

want encoded Bell pair:

get:

low bit
error rate

high bit
error rate

monotonicity ⇒

But!



 Bounded dependencies
– Between bit & logical errors

Monotonicity?

Main issues …
w/ prob. 1-q

3% bit error rate

…
w/ prob. q

1% bit error rate

(repetition code)



Recent results (continued)

– εc > 0 for several noise models [Aharonov & Ben-Or ‘97, Kitaev ‘97]
– εc ≥ 10-4 for independent probabilistic noise [Ouyang, R. ‘05]
– εc = 1/2 for Bell measurement erasure errors (detected errors) [Knill ‘03]

 Magic states distillation [Bravyi & Kitaev ‘04, Knill ‘04]
– Universality method, related to best current threshold upper bounds
– Reduction from FT universality to FT stabilizer operations

 Optimized fault-tolerance schemes: [Knill ‘03]
– Erasure error threshold is 1/2 for Bell measurements
– [Knill ‘05]: > 5% estimated threshold for depolarizing noise

 Improved threshold proofs
– Aliferis/Gottesman/Preskill ‘05: 2.7 x 10-5

– R. ‘05:                                    < 1.4 x 10-5

– Ouyang, R. (unpublished):        10-4

more efficient
distance three

1% with substantial but more reasonable overhead



Distance-3 code thresholds
 Basic estimates

– Aharonov & Ben-Or (1997)
– Knill-Laflamme-Zurek (1998)
– Preskill (1998)
– Gottesman (1997)

 Optimized estimates
– Zalka (1997)
– R. (2004)
– Svore-Cross-Chuang-Aho (2005)

 2-dimensional locality constraint
– Szkopek et al (2004)
– Svore-Terhal-DiVincenzo (2005)

 But no constant threshold was even proven to exist for distance-3 codes!
– Aharonov & Ben-Or proof only works for codes of distance at least 5

 Today: Threshold for distance-3 codes



Dist-2 code threshold & threshold gap
 Knill (2005) has highest threshold estimate ~5%

– … Albeit with large constant overhead (more reasonable at 1%)
– Again, no threshold has been proved to exist

 Gaps between proven and estimated thresholds
– Estimates are as high as ~5%
– Aliferis-Gottesman-Preskill (2005): 2.6 x 10-5

 Caveat: Small codes aren’t necessarily the most efficient
– Steane (‘03) found 23-qubit Golay code had higher threshold (based
on simulations), particularly with slow measurements
– 23-qubit Golay code proven: 10-4



Distance-three code threshold proof intuition

 Idea: Maintain inductive invariant of wellness.  (A block is well “if it has at
most one unwell subblock, and that only rarely.”)
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well

What’s new: Control probability distribution of
errors, not just error states.



Aharonov/Ben-Or-style proof intuition

 Idea: Maintain inductive invariant of goodness.  (A block is good “if it has at
most one bad subblock.”)
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Aharonov/Ben-Or-style proof intuition

 Idea: Maintain inductive invariant of goodness.  (A block is good “if it has at
most one bad subblock.”)
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Aharonov/Ben-Or-style proof intuition

 Idea: Maintain inductive invariant of goodness.  (A block is good “if it has at
most one bad subblock.”)
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Aharonov/Ben-Or-style proof intuition

 Idea: Maintain inductive invariant of goodness.  (A block is good “if it has at
most one bad subblock.”)
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For distance-5 code:
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 Inefficient:

2.                          not           (distance = 5) 

3. No threshold for concatenated
distance-three codes.



Aharonov/Ben-Or-style proof intuition

 Idea: Maintain inductive invariant of goodness.  (A block is good “if it has at
most one bad subblock.”)
 Why not for distance-three codes?

EC
X

good bad
X
X

 New idea: Most blocks should have no bad subblocks.  Maintain inductive
invariant of a controlled probability distribution of errors: “wellness.”  (A block is
well “if it only rarely has a bad subblock.”)

(one level k-1 error is already too many)



 Def: Error states
 Def: Relative error states
 Def: good block
 Def: “well” block
 Distance-3 code threshold setup
 Def: Logical success and failure
 Distance-3 code threshold proof

Proof overview

(resolve                       ambiguity)

(encoded CNOT must work even on erroneous input)
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Def: CNOT

Def: Error states
 Problem: Different errors are
equivalent, so it is ambiguous which
bit is in error

 Solution: Track errors from their
introduction



 Tracking errors
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equivalent, so it is ambiguous which
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 Solution: Track errors from their
introduction

Def: Error states



Def: Error states
 Tracking errors  Block error states: ideal recursive

decoding

 Note: Block errors do not follow same
rules as bit errors

- e.g., 001 + 010 = 011
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 Tracking errors  Block error states: ideal recursive
decoding

 Note: relative state is relative to state
of superblock, not superblock’s relative
state
 We can measure block relative states.

Def: Relative Error states
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 Relative error states



 Tracking errors  Block error states: ideal recursive decoding

 Relative error states

rel. Xrel. X

rel. X

X X

X
XX

 Def: A blockk is goodk if it has at most one subblockk-1 either in relative error or
not goodk-1 itself.
(Every bit [≡ block0] is good0.)

Def: good



 A good block has at
most one subblock either
in relative error or bad.

 Relative error states
based on ideal recursive
decoding

good bad

good examples
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decoding
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(at most one subblock either in
relative error or bad)

good bad
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relative error or bad)
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(at most one subblock either in
relative error or bad)

good bad



 Tracking errors  Block error states: ideal recursive decoding

 Relative error states
X X

X
XX

 Def: A blockk is goodk if it has at most one subblockk-1 either in relative error or
not goodk-1 itself.
(Every bit [≡ block0] is good0.)

Def: well



 Def: A blockk is wellk(p1,…,pk) if it has at most one subblockk-1 either in relative
error or not wellk-1(p1,…,pk-1) itself.
    Additionally, the probability of such a subblock, conditioned on the block’s
state and the state of all bits in other blocks, is ≤ pk.
(Every bit [≡ block0] is well0.)

 Tracking errors  Block error states: ideal recursive decoding

 Relative error states
X X

X
XX

Def: well



 Def: A blockk is wellk(p1,…,pk) if it has at most one subblockk-1 either in relative
error or not wellk-1(p1,…,pk-1) itself.
    Additionally, the probability of such a subblock, conditioned on the block’s
state and the state of all bits in other blocks, is ≤ pk.
(Every bit [≡ block0] is well0.)

Def: well
 Tracking errors  Block error states: ideal recursive decoding

 Relative error states
X X

X
XX

 Note: Conditioned on block’s state, e.g.,

  is not 1-well.
w/prob. 1-pk w/prob. pk



Dist-3 code setup

 Claim Ck (CNOTk): On success:
– Wellk(b1,…,bk) inputs ⇒ wellk(b1,…,bk) outputs, and logical CNOT
– Arbitrary inputs ⇒ wellk(b1,…,bk) outputs, and possibly incorrect logical effect

  Failure prob. ≤ Ck (C0 = p).

 Base noise model: CNOT0 gates fail with X errors independently w/ prob. p



 Def: Logical operation Uk on one or more blocksk has the correct logical
effect if the diagram commutes:

 Uk has a possibly incorrect logical effect if the same diagram commutes but
with            on the top arrow, where P is a Pauli operator or Pauli product on
the involved blocks.

Def: Logical failure



 Claim Ck (CNOTk): On success:
– Well inputs ⇒ well outputs, and logical CNOT
– Arbitrary inputs ⇒ well outputs

  Failure prob. ≤ Ck (C0 = p).

EC

EC

well

well

D

D

D

D

 Claim Bk (Correctionk): On success:
– Wellk(b1,…,bk) input ⇒ wellk(b1,…,bk) output, and no logical effect
– Arbitrary input ⇒ wellk(b1,…,bk) output

  Failure prob. ≤ Bk (B0 = 0).
Additionally, if all but one of the input subblocksk-1 are wellk-1(b1,…,bk-1), then with
probability at least 1-Bk’ there is no logical effect and the output is wellk(b1,…,bk).

Dist-3 code setup



 Two operations:
A.
B. Error correction
C. (Logical) CNOT gate

 Two indexed claims:
A.
B. Error correctionk
C. CNOTk

 Proofs by induction: Implications:

k

k

k

success except w/ prob.
success except w/ prob.

Dist-3 code threshold proof



CNOTk
proof:

 Assume input blocks are wellk(b1,…,bk).  Declare failure if either Correctionk
fails, or if there are two level k-1 failures.

 On success, transverse CNOTsk-1 implement the correct logical effect (but
possibly correlate errors).  The successful Correctionsk have no logical effect but
restore wellness (bounded dependencies).

Dist-3 code threshold proof
 Claim Bk (Correctionk): On success:

– Wellk(b1,…,bk) input ⇒ wellk(b1,…,bk) output,
no logical effect
– Arbitrary input ⇒ wellk(b1,…,bk) output

  Failure prob. ≤ Bk (B0 = 0).
Additionally, if all but one of input subblocksk-1 are
wellk-1(b1,…,bk-1), then w/ prob. ≥ 1-Bk’, output is
wellk(b1,…,bk) and no logical effect.
 Claim Ck (CNOTk): On success:

– Well inputs ⇒ well outputs, and logical CNOT
– Arbitrary inputs ⇒ well outputs

  Failure prob. ≤ Ck (C0 = p).



CNOTk proof: Failure if either Correctionk fails, or if there are two level k-1 failures.

Success: transverse CNOTsk-1 implement correct logical effect.  Correctionsk have no
logical effect.

Dist-3 code threshold proof
 Claim Ck (CNOTk): On success:

– Well inputs ⇒ well outputs, and logical CNOT
– Arbitrary inputs ⇒ well outputs

  Failure prob. ≤ Ck (C0 = p).
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Aliferis-Gottesman-Preskill threshold intuition

 Aharonov & Ben-Or Idea: Maintain inductive invariant of (1-)goodness.  (A
block is good “if it has at most one bad subblock.”)

1. EC

EC
X

X X

X

X

 Two ways it can fail with distance-three codes:

2. EC

EC

X X

X

X

X

   Both input blocks have a bad subblock.    One input block has a bad subblock, and
an additional error occurs.



Aliferis-Gottesman-Preskill threshold intuition
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 A/B: Maintain ‘good’ness — two faults in rectangle cause logical failure (d≥5)

 R: Maintain ‘well’ness — two faults in rectangle or well input cause logical failure
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 R: Maintain ‘well’ness — two faults in rectangle or well input cause logical failure

 A/G/P: two faults in extended (overlapping) rectangle cause logical failure

…errors in input come from errors in
the preceding error correction…
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the preceding error correction…
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Aliferis-Gottesman-Preskill threshold intuition
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 A/B: Maintain ‘good’ness — two faults in
rectangle cause logical failure (d≥5)
 R:    Maintain ‘well’ness — two faults in
rectangle or well input cause logical failure

 A/G/P: two faults in extended
(overlapping) rectangle cause logical
failure

…errors in input come from errors in
the preceding error correction…
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Teleporting a CNOT gate
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Logical
operations

Physical
operations

Teleporting a CNOT gate

output blocks dependent!



Logical
operations

Physical
operations

Teleporting a CNOT gate

assume
independent

assume
independent

independent!

⇒ Achieving independent errors on CNOT output blocks 
reduces to preparing encoded Bell states with block-independent errors

Unfortunately, this is impossible…  But:



Summary
 New threshold proof

– Based on bounding the distribution of errors in the system at each
time step
– More efficient than classical threshold proofs, leads to higher rigorous
noise threshold lower bounds
– Works for concatenated distance-three codes

 Possible extensions
– Improved analysis of optimized standard fault-tolerance schemes

– Extend proof to work with schemes using distance-two codes and
extensive postselection.  Major difficulty is obtaining better control over
error distribution, particularly of dependencies and of errors in the bad
blocks.

(Ouyang, R.: 10-4)



Blank slide


