Rigorous fault-tolerance thresholds

Ben Reichardt UC Berkeley

N gate circuit

N gate circuit ⇒ Need error ≪1/N

Quantum fault-tolerance problem

Classical fault-tolerance: Von Neumann (1956)

Quantum fault-tolerance problem

Classical fault-tolerance: Von Neumann (1956)

Fault-tolerant, larger

- High tolerable noise
- Low overhead

Important problem!

Intuition

- Work on encoded data
- Correct errors to prevent spread
- Concatenate procedure for arbitrary reliability

- Quantum fault-tolerance: Shor (1996)
 - Using poly(log N)-sized code, tolerate 1/poly(log N) error
- Aharonov & Ben-Or ('97), Kitaev ('97), Knill-Laflamme-Zurek ('97)
 - Using concatenated constant-sized code, tolerate constant error

Intuition

- Work on encoded data
- Correct errors to prevent spread
- Concatenate procedure for arbitrary reliability

- Quantum fault-tolerance: Shor (1996)
 - Using poly(log N)-sized code, tolerate 1/poly(log N) error
- Aharonov & Ben-Or ('97), Kitaev ('97), Knill-Laflamme-Zurek ('97)
 - Using concatenated constant-sized code, tolerate constant error

Concatenation

- N gate circuit
 - \Rightarrow Want error $\ll 1/N$
- m-qubit, t-error correcting code

Probability of error	Physical bits per logical bit
р	1
c p ^{t+1}	m
$\sim p^{(t+1)^2}$	m ²
p ^{(t+1)³}	m^3

O(log log N) concatenations poly(log N) physical bits / logical

Physical gate error rate p

Recent results

- Magic states distillation [Bravyi & Kitaev '04, Knill '04]
 - Universality method, related to best current threshold upper bounds

> Stabilizer op. Universal Reduction

fault-tolerance faι

Recent results

- Magic states distillation [Bravyi & Kitaev '04, Knill '04]
 - Universality method, related to best current threshold upper bounds
 - Reduction from FT universality to FT stabilizer operations
- Optimized fault-tolerance schemes: [Knill '03]
 - Erasure error threshold is 1/2 for Bell measurements
 - [Knill '05]: >5% estimated threshold for depolarizing noise 1% with substantial but more reasonable overhead

Fault-tolerance threshold myth:

Threshold is all that counts.

Maximize the threshold at all costs.

Steane-type error correction

Logical operations

Steane-type error correction

Knill-type error correction

Logical operations

Teleportation

Knill-type error correction

Advantages

- Efficient
- Technical advantage: Reduces blockwise independence to encoded Bell state

Teleportation

Logical operations

Knill-type correction+ computation

Advantages

- Efficient
- Technical advantage: Reduces blockwise independence to encoded Bell state

Logical operations

Teleportation $\begin{array}{c|c} |\psi\rangle & & & & \\ |\psi\rangle & & & & \\ |00\rangle & & & & \\ |+|11\rangle & & & & \\ U - U|\psi\rangle \end{array}$

Knill-type correction+ computation

Advantages

- Efficient
- Technical advantage: Reduces blockwise independence to encoded Bell state

Logical operations

Knill-type correction+ computation

Teleportation

operations

-ogical

- + Distance-two code
- + Postselection

Advantages

- Efficient
- Technical advantage: Reduces blockwise independence to encoded Bell state
- Allows for more checking

Disadvantages

- High overhead at high error rates with error detection
- Renormalization penalty requires stronger control over error distribution
- No threshold has been proved to exist

Main issues

- Bounded dependencies
 - Between different blocks
 - In time
 - Between bit errors and logical errors
- Example:

 $|0\rangle_L$ w/ prob. 1-q

 $|1
angle_L$ w/ prob. q

3% bit error rate

1% bit error rate

accepted w/ prob. (1-q) .97ⁿ

 $q.99^n$

⇒ Probability of logical error increases exponentially!

Main issues

- Bounded dependencies
 - Between bit & logical errors

Monotonicity?

want encoded Bell pair: $|00
angle_L + |11
angle_L$

But!
$$|01\rangle_L + |10\rangle_L$$

Main issues

- Bounded dependencies
 - Between bit & logical errors

Monotonicity?

Recent results (continued)

- Magic states distillation [Bravyi & Kitaev '04, Knill '04]
 - Universality method, related to best current threshold upper bounds
 - Reduction from FT universality to FT stabilizer operations
- Optimized fault-tolerance schemes: [Knill '03]
 - Erasure error threshold is 1/2 for Bell measurements
 - [Knill '05]: >5% estimated threshold for depolarizing noise 1% with substantial but more reasonable overhead
- Improved threshold proofs
 - Aliferis/Gottesman/Preskill '05: 2.7 x 10⁻⁵
 R. '05:
 T. 4 x 10⁻⁵
 More efficient distance three
 - Ouyang, R. (unpublished): 10⁻⁴

Distance-3 code thresholds

- Basic estimates
 - Aharonov & Ben-Or (1997)
 - Knill-Laflamme-Zurek (1998)
 - Preskill (1998)
 - Gottesman (1997)
- Optimized estimates
 - Zalka (1997)
 - R. (2004)
 - Svore-Cross-Chuang-Aho (2005)
- 2-dimensional locality constraint
 - Szkopek et al (2004)
 - Svore-Terhal-DiVincenzo (2005)

- But no constant threshold was even proven to exist for distance-3 codes!
 - Aharonov & Ben-Or proof only works for codes of distance at least 5
- Today: Threshold for distance-3 codes

Dist-2 code threshold & threshold gap

- Knill (2005) has highest threshold estimate ~5%
 - Albeit with large constant overhead (more reasonable at 1%)
 - Again, no threshold has been proved to exist
- Gaps between proven and estimated thresholds
 - Estimates are as high as ~5%
 - Aliferis-Gottesman-Preskill (2005): 2.6 x 10⁻⁵

- Caveat: Small codes aren't necessarily the most efficient
 - Steane ('03) found 23-qubit Golay code had higher threshold (based on simulations), particularly with slow measurements
 - 23-qubit Golay code proven: 10-4

Distance-three code threshold proof intuition

■ **Idea:** Maintain inductive invariant of wellness. (A block is well "if it has at most one unwell subblock, and that only rarely.")

What's new: Control *probability distribution* of errors, not just error states.

■ Idea: Maintain inductive invariant of goodness. (A block is good "if it has at most one bad subblock.")

(assuming one level k-1 error, m≥7)

■ Idea: Maintain inductive invariant of goodness. (A block is good "if it has at most one bad subblock.")

(assuming one level k-1 error, m≥7)

■ Idea: Maintain inductive invariant of goodness. (A block is good "if it has at most one bad subblock.")

(two level k-1 errors, m=7)

■ **Idea:** Maintain inductive invariant of goodness. (A block is good "if it has at most one bad subblock.")

(two level k-1 errors)

■ Idea: Maintain inductive invariant of goodness. (A block is good "if it has at most one bad subblock.")

For distance-5 code:

■ **Idea:** Maintain inductive invariant of goodness. (A block is good "if it has at most one bad subblock.")

For distance-5 code:

Inefficient:

2.
$$p \rightarrow {m \choose 2} p^2$$
 not cp^3 (distance = 5)

3. No threshold for concatenated distance-three codes.

- **Idea:** Maintain inductive invariant of goodness. (A block is good "if it has at most one bad subblock.")
- Why not for distance-three codes?

(one level k-1 error is already too many)

■ **New idea:** Most blocks should have no bad subblocks. Maintain inductive invariant of a controlled probability distribution of errors: "wellness." (A block is well "if it only rarely has a bad subblock.")

Proof overview

■ Def: Error states (resolve $|01\rangle + |10\rangle$ ambiguity)

■ Def: Relative error states (encoded CNOT must work even on erroneous input)

Def: good block

Def: "well" block

Distance-3 code threshold setup

Def: Logical success and failure

Distance-3 code threshold proof

Def: Error states

- **Problem:** Different errors are equivalent, so it is ambiguous which bit is in error $|01\rangle + |10\rangle$
- **Solution:** Track errors from their introduction

Def: Error states

Tracking errors

- **Problem:** Different errors are equivalent, so it is ambiguous which bit is in error $|01\rangle + |10\rangle$
- **Solution:** Track errors from their introduction

Def: Error states

Tracking errors

■ Block error states: ideal recursive decoding

Def: Relative Error states

Tracking errors

- Block error states: ideal recursive decoding
- Relative error states

Def: good

Tracking errors

Relative error states

■ **Def:** A block_k is $good_k$ if it has at most one subblock_{k-1} either in relative error or not $good_{k-1}$ itself.

(Every bit $[\equiv block_0]$ is $good_0$.)

good examples

- Relative error states
 based on ideal recursive
 decoding
 A good block has at
- A good block has at most one subblock either in relative error or bad.

good examples

- Relative error states based on ideal recursive decoding
- decoding
 A good block has at most one subblock either in relative error or bad.

good examples

- Relative error states
 based on ideal recursive
 decoding
 A good block has at
- A good block has at most one subblock either in relative error or bad.

good (at most one subblock either in bad relative error or bad) $\times \times \times \times$ $I \mid X \times X$ IIXXXX X5

good (at most one subblock either in bad relative error or bad) $\times \times \times \times$ $I \mid X \times X$

Def: well

Tracking errors

Relative error states

■ **Def:** A block_k is $good_k$ if it has at most one subblock_{k-1} either in relative error or not $good_{k-1}$ itself.

(Every bit $[\equiv block_0]$ is $good_0$.)

Def: well

Tracking errors

■ Block error states: ideal recursive decoding

Relative error states

■ **Def:** A block_k is well_k($p_1,...,p_k$) if it has at most one subblock_{k-1} either in relative error or not well_{k-1}($p_1,...,p_{k-1}$) itself.

Additionally, the probability of such a subblock, conditioned on the block's state and the state of all bits in other blocks, is $\leq p_k$. (Every bit [\equiv block₀] is well₀.)

Def: well

Tracking errors

Block error states: ideal recursive decoding

Relative error states

■ **Def:** A block_k is well_k($p_1,...,p_k$) if it has at most one subblock_{k-1} either in relative error or not well_{k-1}($p_1,...,p_{k-1}$) itself.

Additionally, the probability of such a subblock, conditioned on the block's state and the state of all bits in other blocks, is $\leq p_k$. (Every bit [\equiv block₀] is well₀.)

■ **Note:** Conditioned on block's state, e.g.,

is not 1-well.

Dist-3 code setup

- Base noise model: CNOT₀ gates fail with × errors independently w/ prob. p
- Claim C_k (CNOT_k): On success:
 - Well_k($b_1,...,b_k$) inputs \Rightarrow well_k($b_1,...,b_k$) outputs, and logical CNOT
 - Arbitrary inputs \Rightarrow well_k(b₁,...,b_k) outputs, and possibly incorrect logical effect Failure prob. $\leq C_k$ ($C_0 = p$).

Def: Logical failure

■ **Def:** Logical operation U_k on one or more blocks_k has the correct logical effect if the diagram commutes:

lacksquare U_k has a possibly incorrect logical effect if the same diagram commutes but with $P\circ U$ on the top arrow, where P is a Pauli operator or Pauli product on the involved blocks.

Dist-3 code setup

- Claim C_k (CNOT_k): On success:
 - Well inputs ⇒ well outputs, and logical CNOT
 - Arbitrary inputs ⇒ well outputs

Failure prob. $\leq C_k (C_0 = p)$.

- Claim B_k (Correction_k): On success:
 - $Well_k(b_1,...,b_k)$ input \Rightarrow $well_k(b_1,...,b_k)$ output, and no logical effect
 - Arbitrary input \Rightarrow well_k(b₁,...,b_k) output

Failure prob. $\leq B_k (B_0 = 0)$.

Additionally, if all but one of the input subblocks_{k-1} are well_{k-1}(b₁,...,b_{k-1}), then with probability at least $1-B_k$ ' there is no logical effect and the output is well_k(b₁,...,b_k).

Dist-3 code threshold proof

Two operations:

- Error correction
- c. (Logical) CNOT gate

Two indexed claims:

Ck CNOTk

 B_k Error correction_k success except w/ prob. $\leq B_k$ success except w/ prob. $\leq C_k$

Proofs by induction: Implications:

$$k-1$$
 k

$$k-1 \longrightarrow k$$

$$k-1 \longrightarrow k$$
 $B_k = O\left((B_{k-1} + C_{k-1})^2\right)$

$$C_k = O\left(B_k + C_{k-1}^2\right)$$

Dist-3 code threshold proof

- Claim B_k (Correction_k): On success:
 - Well_k(b₁,...,b_k) input ⇒ well_k(b₁,...,b_k) output, no logical effect
 - Arbitrary input \Rightarrow well_k(b₁,...,b_k) output

Failure prob. $\leq B_k (B_0 = 0)$.

Additionally, if all but one of input subblocks_{k-1} are $\text{well}_{k-1}(b_1,...,b_{k-1})$, then w/ prob. $\geq 1-B_k$, output is $\text{well}_k(b_1,...,b_k)$ and no logical effect.

- Claim C_k (CNOT_k): On success:
 - Well inputs ⇒ well outputs, and logical CNOT
 - Arbitrary inputs ⇒ well outputs

Failure prob. $\leq C_k (C_0 = p)$.

■ Assume input blocks are $well_k(b_1,...,b_k)$. Declare failure if either Correction_k fails, or if there are two level k-1 failures.

$$C_k \equiv \left(2B_k + (nC_{k-1})(2B_k') + \binom{n}{2}C_{k-1}^2\right) + 2b_k(2B_k' + nC_{k-1}) + b_k^2$$

lacktriangleright On success, transverse CNOTs_{k-1} implement the correct logical effect (but possibly correlate errors). The successful Corrections_k have no logical effect but restore wellness (bounded dependencies).

Dist-3 code threshold proof

- Claim C_k (CNOT_k): On success:
 - Well inputs ⇒ well outputs, and logical CNOT
 - Arbitrary inputs ⇒ well outputs

Failure prob. $\leq C_k (C_0 = p)$.

CNOT_k proof: Failure if either Correction_k fails, or if there are two level k-1 failures.

Success: transverse $CNOTs_{k-1}$ implement correct logical effect. Corrections_k have no logical effect.

- Aharonov & Ben-Or Idea: Maintain inductive invariant of (1-)goodness. (A block is good "if it has at most one bad subblock.")
- Two ways it can fail with distance-three codes:

1. X EC X EC

Both input blocks have a bad subblock.

2. EC

One input block has a bad subblock, and an additional error occurs.

- A/B: Maintain 'good'ness two faults in rectangle cause logical failure (d≥5)
- R: Maintain 'well'ness two faults in rectangle or well input cause logical failure

- A/B: Maintain 'good'ness two faults in rectangle cause logical failure (d≥5)
- R: Maintain 'well'ness two faults in rectangle or well input cause logical failure

...errors in input come from errors in the preceding error correction...

A/G/P: two faults in extended (overlapping) rectangle cause logical failure

- A/B: Maintain 'good'ness two faults in rectangle cause logical failure (d≥5)
- R: Maintain 'well'ness two faults in rectangle or well input cause logical failure

...errors in input come from errors in the preceding error correction...

 A/G/P: two faults in extended (overlapping) rectangle cause logical failure

- A/B: Maintain 'good'ness two faults in rectangle cause logical failure (d≥5)
- R: Maintain 'well'ness two faults in rectangle or well input cause logical failure

...errors in input come from errors in the preceding error correction...

 A/G/P: two faults in extended (overlapping) rectangle cause logical failure

- A/B: Maintain 'good'ness two faults in rectangle cause logical failure (d≥5)
- R: Maintain 'well'ness two faults in rectangle or well input cause logical failure

...errors in input come from errors in the preceding error correction...

 A/G/P: two faults in extended (overlapping) rectangle cause logical failure

Steane-type error correction

Knill-type correction + computation

operations Logical

Teleportation

Teleporting a CNOT gate

Logical operations

Teleporting a CNOT gate

Teleporting a CNOT gate

Logical operations

Physical operations

⇒ Achieving independent errors on CNOT output blocks reduces to preparing encoded Bell states with block-independent errors

Unfortunately, this is impossible... But:

Summary

- New threshold proof
 - Based on bounding the *distribution* of errors in the system at each time step
 - More efficient than classical threshold proofs, leads to higher rigorous noise threshold lower bounds
 - Works for concatenated distance-three codes
- Possible extensions
 - Improved analysis of optimized standard fault-tolerance schemes (Ouyang, R.: 10⁻⁴)
 - Extend proof to work with schemes using distance-two codes and extensive postselection. Major difficulty is obtaining better control over error distribution, particularly of dependencies and of errors in the bad blocks.

Blank slide