A fault-tolerant one-way quantum computer

Robert Raussendorf¹, Jim Harrington² and Kovid Goyal¹

1: California Institute of Technology,

2: Los Alamos National Laboratory

QIP Paris, 20th February 2006

Main idea

Universal quantum computation by local measurements:

• A three-dimensional cluster state is a *fault-tolerant fabric*.

2D cluster state

3D cluster state

Retain universality, add fault-tolerance

Make use of geometry!

Result

- Geometric constraint: only *local* and *next-neighbor* interaction of qubits on a three-dimensional lattice required.
- Fault-tolerance threshold of 1.1×10^{-3} (each source). Error sources: preparation, gates, storage and measurement.
- Polynomial overhead.

Overview

Three cluster regions:

V (Vacuum), D (Defect) and S (Singular qubits).

Qubits $q \in V$:local X-measurements,Qubits $q \in D$:local Z-measurements,Qubits $q \in S$:local measurements of $\frac{X \pm Y}{\sqrt{2}}$.

Preliminiaries:

The one-way quantum computer, cluster states and topological codes

The one-way quantum computer

measurement of Z (\odot), X (\uparrow), cos αX + sin αY (\nearrow)

- Universal computational resource: cluster state.
- Information written onto the cluster, processed and read out by one-qubit measurements only.

Cluster states

A cluster state $|\phi\rangle_{\mathcal{C}}$ on a cluster \mathcal{C} is the single common eigenstate of the stabilizer operators

$$K_a = X_a \bigotimes_{b \in N(a)} Z_b, \quad \forall a \in \mathcal{C},$$
(1)

where $b \in N(a)$ if a, b are spatial next neighbors in C.

Topological quantum codes

- Errors are represented by chains.
- Homologically equivalent chains correspond to physically equivalent errors.
- Harmfull errors stretch across the entire lattice (rare events).
- A. Kitaev,quant-ph/9707021 (1997).

Topological quantum codes

• Storage capacity of the code depends upon the topology of the code surface.

Link

• Obtain surface code state from 2D cluster state via regular pattern of Z- and X-measurements.

Part I:

Error correction in 3D cluster states

Cluster states in three spatial dimensions provide intrinsic topological error correction.

elementary cell of \mathcal{L}

qubit location:(even, odd, odd)- face of \mathcal{L} ,qubit location:(odd, odd, even)- edge of \mathcal{L} ,syndrome location:(odd, odd, odd)- cube of \mathcal{L} ,syndrome location:(even, even, even)- site of \mathcal{L} .

Topological error correction in V

Measurement pattern:

• The qubits $q \in V$ are individually measured in the X-basis.

Errors:

- Consider probabilistic Pauli errors.
- Sufficient to consider *Z*-errors.

(X-errors are absorbed into the X-measurement, $\frac{I\pm X}{2}X = \pm \frac{I\pm X}{2}$.)

• Stabilizer elements associated with faces f of \mathcal{L} :

$$K(f) = \bigotimes_{a \in f} X_f \bigotimes_{b \in \partial f} Z_b.$$
 (2)

• Stabilizer for syndrome $([K(f), X_q] = 0 \forall q \in V)$:

$$\partial f = 0. \tag{3}$$

• One syndrome bit per cell of \mathcal{L} . Protects the face qubits.

What about the edge qubits?

Lattice duality $\mathcal{L} \longleftrightarrow \overline{\mathcal{L}}$

Translation by vector $(1, 1, 1)^T$:

- Cluster \mathcal{C} invariant,
- \mathcal{L} (primal) $\longrightarrow \overline{\mathcal{L}}$ (dual).

(4)

face of \mathcal{L} – edge of $\overline{\mathcal{L}}$, edge of \mathcal{L} – face of $\overline{\mathcal{L}}$, site of \mathcal{L} – cube of $\overline{\mathcal{L}}$, cube of \mathcal{L} – site of $\overline{\mathcal{L}}$,

- Edge qubits protected by stabilizer on dual lattice $\overline{\mathcal{L}}$.
- Many objects in this scheme exist as 'primal' and 'dual'.

Topological error correction in ${\cal V}$

- One syndrome bit for each elemetary cell of \mathcal{L} .
- Harmful errors stretch across entire lattice \mathcal{L} .
- -> Leads to Random plaquette Z_2 -gauge model (RPGM) [1].

[1] Dennis et al., quant-ph/0110143 (2001).

RPGM: schematic phase diagram

Map error correction to statistical mechanics:

- [1] T. Ohno et al., quant-ph/0401101 (2004).
- [2] E. Dennis et al., quant-ph/0110143 (2001); J. Edmonds, Canadian J. Math. 17, 449 (1965).

Cluster region VDefects $d \in D$ Singular qubits

Part II: Quantum Logic

Fault-tolerant quantum logic is realized via topologically entangled engineered lattice defects.

Defects

- Defects are regions of the cluster where qubits are measured in the Z-basis.
- Defects create cluster boundaries (cuts).
- There are *primal* and *dual* defects.

Defects for quantum logic

A quantum circuit is encoded in the way primal and dual defects are wound around another.

Quantum gates, Part I

Piece of wire

Quantum gates, Part I

1 Qubit

Quantum gates, Part I

- Displayed fault-tolerant gates are not universal.
- Need one non-Clifford element: fault-tolerant measurement of $\frac{X\pm Y}{\sqrt{2}}$.

Quantum gates, Part II

Encoder and decoder for surface code:

Quantum gates, Part II

A circuit for code-conversion:

• Reed-Muller code: Fault-tolerant measurement of $\frac{X\pm Y}{\sqrt{2}}$ via *local* measurements of $\frac{X_a\pm Y_a}{\sqrt{2}}$ and classical post-processing.

-> Fault-tolerant universal gate set complete.

Part III: The Error Model

Error model:

- Cluster state created in a 4-step sequence of $\Lambda(Z)$ -gates from product state $\bigotimes_{a \in \mathcal{C}} |+\rangle_a$.
- Error sources:
 - $|+\rangle$ -preparation: Perfect preparation followed by 1-qubit partially depolarizing noise with probability p_P .
 - $\Lambda(Z)$ -gates: Perfect gates followed by 2-qubit partially depolarizing noise with probability p_2 .
 - Memory: 1-qubit partially depolarizing noise with probability p_S per time step.
 - Measurement: Perfect measurement preceded by 1-qubit partially depolarizing noise with probability p_M .
- 3D cluster state created in slices of fixed thickness.
- Instant classical processing.

Part IV: Threshold and overhead

The fault-tolerance threshold is 1.1×10^{-3} for each source. The overhead is polynomial.

Topological error-correction in V

$$p_{2,c} = 9.6 \times 10^{-3}, \quad \text{for } p_P = p_S = p_M = 0, \\ p_c = 5.8 \times 10^{-3}, \quad \text{for } p_P = p_S = p_M = p_2 =: p.$$
(5)

Reed-Muller error-correction in S

Error budget from Reed-Muller concatenation threshold:

$$\frac{76}{15}p_2 + \frac{2}{3}p_P + \frac{4}{3}p_M + \frac{4}{3}p_S < \frac{1}{105}.$$
 (6)

Specific parameter choices:

$$p_{2,c} = 2.9 \times 10^{-3}, \quad \text{for } p_P = p_S = p_M = 0, \\ p_c = 1.1 \times 10^{-3}, \quad \text{for } p_P = p_S = p_M = p_2 =: p.$$
(7)

The Reed-Muller code sets the overall threshold.

Overhead

N: Number of non-Clifford operations in bare computation. N_{ft} : Number of operations for fault-tolerant computation.

$$N_{\rm ft} \le N^2 \, (\log N)^{10.8} \,.$$
 (8)

- Overhead is polynomial.
- Exponents may be reduced in more resouceful adaptions.

Summary

[quant-ph/0510135]

Scenario:

• Local and next-neighbor gates in 3D.

Numbers:

• Fault-tolerance threshold of 1.1×10^{-3} for preparation-, gate-, storage- and measurement error (each source).

Methods:

- Cluster states in three spatial dimensions provide intrinsic topological error correction related to the *Random plaquette* Z_2 -gauge model.
- Quantum logic is realized by topologically entangled *engineered lattice defects*.

Supplementary material

Local residual error on S-qubits

- Topological error correction breaks down near the S-qubits.
- Leads to *local* effective error on *S*-qubits.

