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Main idea

Universal quantum computation by local measurements:

• A three-dimensional cluster state is a fault-tolerant fabric.

Retain universality,Retain universality,
add fault-toleranceadd fault-tolerance

2D cluster state 3D cluster state

Make use of geometry!



Result

• Geometric constraint: only local and next-neighbor interac-

tion of qubits on a three-dimensional lattice required.

• Fault-tolerance threshold of 1.1× 10−3 (each source).

Error sources: preparation, gates, storage and measurement.

• Polynomial overhead.



Overview

Three cluster regions:

V (Vacuum), D (Defect) and S (Singular qubits).

Qubits q ∈ V : local X-measurements,
Qubits q ∈ D: local Z-measurements,
Qubits q ∈ S: local measurements of X±Y√

2
.



Preliminiaries:

The one-way quantum computer, cluster states and
topological codes



The one-way quantum computer

measurement of Z (�), X (↑), cosα X + sinα Y (↗)

• Universal computational resource: cluster state.

• Information written onto the cluster, processed and

read out by one-qubit measurements only.



Cluster states

A cluster state |φ〉C on a cluster C is the single common eigenstate

of the stabilizer operators

Ka = Xa
⊗

b∈N(a)

Zb, ∀a ∈ C, (1)

where b ∈ N(a) if a,b are spatial next neighbors in C.

Z-Rule:

Z-measurement

removes qubit
from the cluster



Topological quantum codes
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• Errors are represented by chains.

• Homologically equivalent chains correspond to physically

equivalent errors.

• Harmfull errors stretch across the entire lattice (rare events).

A. Kitaev,quant-ph/9707021 (1997).



Topological quantum codes
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• Storage capacity of the code depends upon the topology of

the code surface.



Link
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2D cluster state surface code state

• Obtain surface code state from 2D cluster state via regular
pattern of Z- and X-measurements.



Talk outline



Part I:

Error correction in 3D cluster states

Cluster states in three spatial dimensions provide

intrinsic topological error correction.



Cluster C and bcc-lattice L
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qubit location: (even, odd, odd) - face of L,
qubit location: (odd, odd, even) - edge of L,
syndrome location: (odd, odd, odd) - cube of L,
syndrome location: (even, even, even) - site of L.



Topological error correction in V

Measurement pattern:

• The qubits q ∈ V are individually measured in the X-basis.

Errors:

• Consider probabilistic Pauli errors.

• Sufficient to consider Z-errors.

(X-errors are absorbed into the X-measurement, I±X
2

X = ±I±X
2

.)



Homology
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• Stabilizer elements associated with faces f of L:

K(f) =
⊗
a∈f

Xf

⊗
b∈∂f

Zb. (2)

• Stabilizer for syndrome ([K(f), Xq] = 0 ∀ q ∈ V ):

∂f = 0. (3)

• One syndrome bit per cell of L. Protects the face qubits.

What about the edge qubits?



Lattice duality L ←→ L

Translation by vector (1,1,1)T :

• Cluster C invariant,

• L (primal) −→ L (dual).

face of L − edge of L,

edge of L − face of L,

site of L − cube of L,

cube of L − site of L,

(4)

• Edge qubits protected by stabilizer on dual lattice L.
• Many objects in this scheme exist as ‘primal’ and ‘dual’.



Topological error correction in V

cluster

harmful errorelementary cell

• One syndrome bit for each elemetary cell of L.
• Harmful errors stretch across entire lattice L.

-> Leads to Random plaquette Z2-gauge model (RPGM) [1].

[1] Dennis et al., quant-ph/0110143 (2001).



RPGM: schematic phase diagram

Map error correction to statistical mechanics:

EC

no EC Nishimori line
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Error correction [1]

Minimum weight
chain matching [2]

3%

[1] T. Ohno et al., quant-ph/0401101 (2004).

[2] E. Dennis et al., quant-ph/0110143 (2001); J. Edmonds, Canadian J. Math. 17,

449 (1965).



Cluster region V

Defects d ∈ D

Singular qubits



Part II:

Quantum Logic

Fault-tolerant quantum logic is realized via topologi-

cally entangled engineered lattice defects.



Defects

• Defects are regions of the cluster where qubits are mea-

sured in the Z-basis.

• Defects create cluster boundaries (cuts).

• There are primal and dual defects.



Defects for quantum logic

CNOT

In Out

target

control

A quantum circuit is encoded in the way
primal and dual defects are wound around another.



Quantum gates, Part I

Piece of wire

pair of primal defects

IN OUT



Quantum gates, Part I X
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Quantum gates, Part I



• Displayed fault-tolerant gates are not universal.

• Need one non-Clifford element:

fault-tolerant measurement of X±Y√
2

.

Cluster region V

Defects d ∈ D

Singular qubits



Quantum gates, Part II

Encoder and decoder for surface code:

singular
qubit

Encoder Decoder



Quantum gates, Part II
A circuit for code-conversion:

Reed-Muller
   encoder

CNOTs,
|0  , |+  -preps.

qubit, encoded with
surface code

qubit, encoded with
Reed-Muller code

• Reed-Muller code: Fault-tolerant measurement of X±Y√
2

via

local measurements of Xa±Ya√
2

and classical post-processing.

-> Fault-tolerant universal gate set complete.



Part III:

The Error Model



Error model:

• Cluster state created in a 4-step sequence of Λ(Z)-gates

from product state
⊗

a∈C |+〉a.

• Error sources:

– |+〉-preparation: Perfect preparation followed by 1-qubit par-

tially depolarizing noise with probability pP .

– Λ(Z)-gates: Perfect gates followed by 2-qubit partially depolar-

izing noise with probability p2.

– Memory: 1-qubit partially depolarizing noise with probability pS

per time step.

– Measurement: Perfect measurement preceeded by 1-qubit par-

tially depolarizing noise with probability pM .

• 3D cluster state created in slices of fixed thickness.

• Instant classical processing.



Part IV:

Threshold and overhead

The fault-tolerance threshold is 1.1×10−3 for each

source. The overhead is polynomial.



Topological error-correction in V

p2,c = 9.6× 10−3, for pP = pS = pM = 0,

pc = 5.8× 10−3, for pP = pS = pM = p2 =: p.
(5)



Reed-Muller error-correction in S

Error budget from Reed-Muller concatenation threshold:

76

15
p2 +

2

3
pP +

4

3
pM +

4

3
pS <

1

105
. (6)

Specific parameter choices:

p2,c = 2.9× 10−3, for pP = pS = pM = 0,

pc = 1.1× 10−3, for pP = pS = pM = p2 =: p.
(7)

The Reed-Muller code sets the overall threshold.



Overhead

N : Number of non-Clifford operations in bare computation.

Nft: Number of operations for fault-tolerant computation.

Nft ≤ N2 (logN)10.8 . (8)

• Overhead is polynomial.

• Exponents may be reduced in more resouceful adaptions.



Summary

[quant-ph/0510135]

Scenario:

• Local and next-neighbor gates in 3D.

Numbers:

• Fault-tolerance threshold of 1.1×10−3 for preparation-,

gate-, storage- and measurement error (each source).

Methods:

• Cluster states in three spatial dimensions provide intrin-

sic topological error correction related to the Random

plaquette Z2-gauge model.

• Quantum logic is realized by topologically entangled en-

gineered lattice defects.



Supplementary material



Local residual error on S-qubits

• Topological error correction breaks down near the S-qubits.

• Leads to local effective error on S-qubits.



The CNOT-gate


