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Introduction
We consider 1D lattices of spins which interact with their neighbours 
(everything applies equally well to higher-dimensional lattices etc.):

Our task: simulate the dynamics of this system 
for some t.



Local answers to local questions

•In condensed-matter physics we want to simulate local quantities such 
as magnetisation and correlators. 

•In quantum algorithms we want to simulate the answer the algorithm 
produces, which should be encoded in the final state in a local way (so it 
is easy to read out).



Where is the locality?!?

In what sense is a state on a tensor-product hilbert space “local”?

Surely we can use locality to reduce cost of simulation!

But how do we talk about locality in tensor-product hilbert spaces H? 
Can we talk about the “locality” of states?

Conclusion: we can’t really talk about the locality of states in any 
meaningful way which connects to the computational cost of simulation. 
The correct ☺ way to describe locality is in the Heisenberg picture.

(Notable exception: in 1D one can use matrix product states (MPS) in the 
Schrödinger picture to efficiently obtain the expectation values of local 
operators. The problem is how to prove that the MPS representation can be 
obtained efficiently: one requires the proof of this talk in the Heisenberg 
picture and then one must translate the results back to the Schrödinger 
picture. This doesn’t work in 2D! But Heisenberg picture approach does…)



Let’s work in the Heisenberg picture!

We can certainly talk about the locality of observables.

Definition: a local observable on a subset Λ of spins is a hermitian
operator M which has form M = MΛ⊗I

Locality manifests itself when we measure M: we make a measurement of 
M on Λ but do nothing outside of Λ:

Expectation values of M don’t care about the state outside of Λ. 

In the thermodynamic, or large-n, limit local observables are the only 
physically accessible observables. (Mathematically the space of local 
observables forms a C*-algebra: the quasilocal algebra.)



Heisenberg picture cont.

In the Heisenberg picture we keep track of the dynamics by changing the 
observables and leaving the initial state unchanged:

Where’s the locality? We look at M(t) and see how big a subset Λ of spins 
you have to choose so that:

From now on we work in the Heisenberg picture. We assume that the 
initial state for our system is |000…0〉. We denote expectation values 
with respect to this state by writing

ω(M) = 〈00…0|M|00…0〉.



Efficiently approximating evolutions

Idea: for local operators M the evolution M(t) = eitHMe-itH of M should be 
nearly the same as that with respect to HL, the hamiltonian for a block of 
L contiguous spins surrounding the operator M:

Region L: Containing j spins

The local operator M

We claim that ||M(t) - ML(t)|| is small when L is a big enough block 
around the site where M lives. ( ||M|| denotes the operator norm of M.)

Evolution w.r.t. HL defined by:

where:



How good is the approximation?
We study

Using fundamental theorem of calculus, unitary invariance of operator 
norm, and triangle inequality, we derive the following system of
differential inequalities:

Solving this system by, eg., Picard iteration yields inequality

with initial conditions Δ0(0) = 1, Δj(0) = 0, j≠0.

Where ||h|| = maxj ||Hj||. This is exponentially decaying in j for constant 
|t|.

where Lj is a contiguous block of j spins centred on the site where M
lives. 



How good is the approximation cont.?
To get our final upper bound for

we use the triangle inequality and sum:

where v,κ are constants depending only on ||h||, which is O(1), and p(t) is 
a lower-order polynomial in t. Exponentially decaying in j!

Since                  can be computed with resources scaling as 2j then we can 
calculate ω(M(t)) efficiently for constant or logarithmic |t|. This can be 
easily extended to operators with support on a bounded number of sites.



Applications
One can easily extend these results to 2D, and more general lattices. With 
a lot more work these results can be extended to treat adiabatic quantum 
evolution of gapped spin systems where one obtains the following

Proposition: Let L be a regular periodic 2D lattice with m2 sites with a 
quantum spin attached to each site. Let the hamiltonian H(s) for this 
system be parameter-dependent and involve interaction terms Hj(s) 
labelled by the vertices of the lattice and which interact only a bounded 
number of spins around j (i.e. H(s) is a parameter-dependent local 
hamiltonian on a 2D lattice):

Assume || Hj(s)||<O(1) and that the gap ΔE(s) between ground state and 
1st excited state satisfies ΔE(s) > O(1). Finally, assume that the ground 
state |Ω(0)〉 of H(0) known efficiently. Then the expectation values of 
local operators in | Ω(s)〉 can be computed efficiently for s < O(1).
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