A limit on nonlocality in any world in which communication complexity is not trivial

André Allan Méthot Université de Genève/Montréal

Work in collaboration with G. Brassard, H. Buhrman, N. Linden A.Tapp & F. Unger quant-ph/0508042

Non-local boxes

Simulating NLBs

- Local hidden variable theory (LHV):
 - 75%.
- Quantum:
 - $\cos^2(\pi/8) \approx 85\%$.
 - Known (in other terms) as the CHSH inequality.
- Why not 100% ?
 - Would not violate causality...

Communication complexity

Probabilistic communication complexity

A limit on non-locality

- Most functions: about n bits of communication.
- Simulating NLBs with an efficiency of 91%: all (boolean) functions can be computed with only one bit of communication!
 - Wim van Dam already had a similar result with 100%.
- Such a world would be unbelievable!

Distributed computing

- A bit x is said to be distributed between Alice and Bob if they have x^A and x^B respectively such that x^A ⊕ x^B = x.
- A function F is computed distributively if Alice can output z^A and Bob z^B such that $z^A \oplus z^B = F(x,y)$.
 - WITHOUT COMMUNICATION.

Bias

- F has a bias: Alice and Bob can produce a distributed bit z such that $z^A \oplus z^B = z = F(x,y)$ with probability $P[z = F(x,y)] > \frac{1}{2}$.
- Every function has a bias.
- F has a bounded bias: ...

...
$$P[z = F(x,y)] > \frac{1}{2} + \delta$$
.

Idea

- We have a distributed bias.
- We want a bounded bias.
- Let's amplify the bias.
- Repetition and Majority.
- Compute Majority distributively (MAJ).
- Use NLBs to implement MAJ.
- Calculate the effeciency of NLBs we need to for this to work.

Majority tree

MAJ > 5/6

- If MAJ can be computed with probability strictly greather than 5/6, than every fonction can be computed with a bounded bias.
- Below that treshold MAJ makes things worst.
- p = Pr[having the right answer].
 q = Pr[MAJ works properly].

$$q(p^3+3p^2(1-p))+(1-q)(3p(1-p)^2+(1-p)^3)> p$$

 $\Rightarrow q > 5/6$

NLBs and MAJ

 We can implement the non-local majority with 2 NLBs.

$$MAJ = [(x_{1}^{A} \oplus x_{2}^{A}) \lor (x_{2}^{A} \oplus x_{3}^{A})] \oplus x_{1}^{A} \oplus x_{2}^{A} \oplus x_{3}^{A}$$

$$\oplus [(x_{1}^{B} \oplus x_{2}^{B}) \lor (x_{2}^{B} \oplus x_{3}^{B})] \oplus x_{1}^{B} \oplus x_{2}^{B} \oplus x_{3}^{B}$$

$$\oplus [(x_{1}^{A} \oplus x_{2}^{A}) \land (x_{2}^{B} \oplus x_{3}^{B})]$$

$$\oplus [(1 \oplus x_{2}^{A} \oplus x_{3}^{A}) \land (x_{1}^{B} \oplus x_{2}^{B})]$$

$$\frac{5}{6} \Rightarrow \frac{1}{2} + \frac{1}{\sqrt{6}}$$

$$p^2 + (1-p)^2 > 5/6$$

$$\Rightarrow p > 1/2 + 1/\sqrt{6} \approx 91\%$$

I have left out the analysis of the convergence of the protocol to a value bounded from 1/2.

Conclusion

- If we take the reasonable assumption that communication complexity is not trivial, we have a bound on non-locality.
 - Take a look at the complexity zoo: http://qwiki.caltech.edu/wiki/Complexity_Zoo.

Protocol:

- Compute distributively F many times with tiny bias.
- Use MAJ tree to amplify the bias.
 - MAJ uses 2 NLBs.
- Bob sends his one bit of the shared output.
- Need NLBs of 91%.
- Classical fault-tolerant computing < 25%

What else in physics can computer science give us insights into?