Lower bounds on Q_B of E_p

 Q_B = quantum capacity assisted by back classical communication

 E_p = erasure channel with erasure prob p

Debbie Leung¹ & Peter Shor²

Charles Bennett, Igor Devetak, Aram Harrow, Patrick Hayden, Andreas Winter

1: IQI, Caltech & IQC, UWaterloo 2: MIT CRC, CFI, OIT, NSERC, CIAR NSF

Q_B: Quantum capacity assisted by back classical communication

- Asymptotic ability to send quantum data: large # uses, high fidelity, entanglement preserving, unlimited local ops
- Unlimited back classical comm (quantity & # rounds)

E_p: Erasure channel with erasure prob p

with prob 1-p: with prob p:

Obvious "resource inequalities" (Devetak-Harrow-Winter)

SP: $E_p + cbit_{\leftarrow} \ge (1-p)$ ebit

Use E_p to send ebits (+ Bob telling Alice Good/Bad @ time)

CC: $E_p + cbit_{\leftarrow} \ge (1-p) cbit_{\rightarrow}$

Use E_p to send cbits (+ feedback)

Omit free cbit_← from now on ...

If you care, augment @ E_p with $cbit_{\leftarrow}$

Post-presentation editing: $E_p \ge (1-2p)$ qbit \downarrow w/o back comm

Previous slide:

SP: $E_p \ge (1-p)$ ebit

CC: $E_p \ge (1-p) cbit_{\rightarrow}$

S ⊂ {Bennett, DiVincenzo, Wootters, Smolin} - 95/96

Original protocol / lower bound for $Q_B(E_p)$

Using TP: 1 ebit + 2 cbit $_{\rightarrow} \ge 1$ qbit $_{\rightarrow}$ (Teleportation) $\therefore \quad E_{p} \ge (1-p)/3 \text{ qbit}_{\rightarrow}$

Idea of the new protocol (coined by Harrow): don't do anything you'll regret

Regret what?

cbit: $|x\rangle_A \rightarrow |x\rangle_F \otimes |x\rangle_B$ Harrow 03

 $cobit: \ |x\rangle_A \to |x\rangle_A \otimes |x\rangle_B \qquad {}^{cf\ qbit:}_{|x\rangle_A \to |x\rangle_B}$

e.g. TP^{co} : 1 ebit + 2 cobits \geq 1 qbit + 2 ebits! *Proof:*

Regret what?

```
cbit: |x\rangle_A \rightarrow |x\rangle_E \otimes |x\rangle_B Harrow 04 cobit: |x\rangle_A \rightarrow |x\rangle_A \otimes |x\rangle_B e.g. TP^{co}: 1 ebit + 2 cobits \geq 1 qbit + 2 ebits! or TP^{co}: 2 cobits \geq 1 qbit + 1 ebit Also: SD: 2 cobits \leq 1 qbit + 1 ebit 2 cobits \leq 1 qbit + 1 ebit
```

In hindsight ... in teleportation protocol for previous lower bound of Q_B , should have exploited coherence in the classical comm generated by E_D

classical comm via E_p can be made coherent-conditioned-on-"Good"

But we don't know which one is Good/Bad upfront ...

Method 1:

Try using E_p to send x in TP as cobits. If either is "Bad", try sending again, now as a cbit.

$$E_p \ge (1-p)^2 \text{ cobit } + (1-p) \text{ p cbit}$$

Proof:

Cost	Yield
1 E _p	1 cobit
2 E _p	1 cbit
3 E _p	1 cbit
	1 E _p 2 E _p

. . .

∴ (1-p) (p + 2p + 3p² + ...)
$$E_p \ge$$
 (1-p) cobit + p cbit

Method 1:

Try using E_p to send x in TP as cobits. If either is "Bad", try sending again, now as a cbit.

$$E_p \ge (1-p)^2 \text{ cobit } + (1-p) \text{ p cbit}$$

If p
$$\geq$$
 ½ , rearrange using 2 cobits = ebit + qbit 1 ebit + 2 cbits \geq 1 qbit E_p + cbit \leftarrow 2 (1-p) ebits

$$E_p \ge 1-p$$
 qbit _{\rightarrow} $1+2p$

Method 2:

Staying "coherent" in the presence of uncertainty

SD via
$$E_p$$
: 1 ebit + $E_p \ge$ (1-p) 2 cobits

Proof:

$$x \in \{0,1,2,3\}$$

Method 2:

Staying "coherent" in the presence of uncertainty

SD via
$$E_p$$
: 1 ebit + $E_p \ge$ (1-p) 2 cobits

Proof:

$$x \in \{0,1,2,3\}$$

Just an ebit between Bob and Eve

Method 2:

Staying "coherent" in the presence of uncertainty

SD via
$$E_p$$
: 1 ebit + $E_p \ge$ (1-p) 2 cobits

TPco: 1 ebit +
$$\frac{1 \text{ ebit } + \text{ E}_p}{1 - p} \ge 1 \text{ qbit}_{\rightarrow} + 2 \text{ ebits}$$

rearranging, and using SP: $E_p \ge (1-p)$ ebits

$$E_p \ge (1-p)^2 qbit_{\rightarrow}$$

Summary of lower bounds for Q_B (E_p):

Further work

- Simple generalization:
 - Phase erasure/mixed erasure channels
 - dimension > 2
 - remote state preparation
- Current method as secret sharing schemes.
 - generalization gives worse results.

_