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# How many of its entries do we need to change
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Rigidity: What and why?

Consider full-rank n x n matrix M

How many of its entries do we need to change
If we want to lower its rank to r?

S~ S~

Ras(r) = min{ A(M, M) | rank(M) < r}

Example:
Ri(r)=n—r
Ry (r) =~ (n —r)? for random M

Motivation (Valiant 77). Explicit matrix with high rigidity
Implies size-depth tradeoffs for arithmetic circuits

Good candidate: n x n Hadamard matrix H
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Renormalized rows |H;) of matrix H ~ H
form a quantum communication system!

To communicate i:

(1) Alice sends |H;) in r dimensions
(2) Bob measures in Hadamard basis

Success probability p; = |(H;|H;)|?
is higher if H; is a better approximation of H;.
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Connection with quantum

Renormalized rows |H;) of matrix H ~ H
form a quantum communication system!

To communicate i:

(1) Alice sends |H;) in r dimensions

(2) Bob measures in Hadamard basis
Success probability p; = |(H;|H;)|?

is higher if H; is a better approximation of H;.

Nayak 99: ) "p; <r
1=1
Tradeoff between r and the quality of the approximation
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Two applications

o : .

n

# This improves Kashin & Razborov by factor 64

# If we limit the change-per-entry to 6:

n?(n —r)
) >
B (r.0) 2 20n + (6% + 20)
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Two applications

o : .

n

# This improves Kashin & Razborov by factor 64

# If we limit the change-per-entry to 6:

nz(n —7)
R 0) >
1(r,6) 2 20n + r(6% + 26)

® Matches earlier results of Lokam and Kashin-Razborov
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To be or not to be quantum

o .

#® Of course, this is all linear algebra

# An anonymous referee suggested an alternative linear
algebra proof for the same bounds

# Quantum method is potentially stronger

® Simple proof of Ry;(r) > n2/4r for HY'°8™ (Midrijanis)
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Summary

=

Reproved best known bounds on rigidity of
Hadamard matrix using quantum information theory

Fits in a sequence of guantum proofs for classical
theorems

These rigidity bounds are not very good

But: the connection with quantum gives a fresh look at
this 28-year old problem, and may yield more
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