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• A language Λ2NP if 9 classical deterministic
verifier V such that
– 8 x 2 Λ 9 w, V accepts x,w 
– 8 x ∉ Λ 8 w, V rejects x,w

• A language Λ2QCMA if 9 quantum verifier V such 
that
– 8 x 2 Λ 9 w, V accepts x,w w.p. > ¾
– 8 x ∉ Λ 8 w, V accepts x,w w.p. < ¼

• A language Λ2QMA if 9 quantum verifier V such 
that
– 8 x 2 Λ 9 |ηi, V accepts x,η w.p. > ¾
– 8 x ∉ Λ 8 |ηi, V accepts x,η w.p. < ¼

NP, QCMA and QMANP, QCMA and QMA
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NP, QCMA and QMANP, QCMA and QMA

NP

QCMA

QMA

AM
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• Basis: 
v1,…,vn vectors in Rn

• The lattice is    

L={a1v1+…+anvn| ai integers}

LatticesLattices

v1 v2

0

2v1
v1+v2 2v2

2v2-v1

2v2-2v1
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•• GapSVPGapSVPβ: : Given a lattice, decide if the length of 
the shortest vector is:
– YES: less than 1
– NO:  more than β

Shortest Vector Problem (SVP)Shortest Vector Problem (SVP)

0

v2

v1
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•• GapCVPGapCVPβ: : Given a lattice and a point v, decide if the distance 
of v from the lattice is:
– YES: less than 1
– NO:  more than β

•• GapSVPGapSVPβ is easier than  GapCVPGapCVPβ [GoldreichMicciancioSafraSeifert99]

Closest Vector Problem (CVP)Closest Vector Problem (CVP)

0

v2

v1

vv
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• Lattice problems are believed to be very 
hard classically

• They are used in strong cryptosystems 
[AjtaiDwork97,Regev03]

• Some connections are known to the dihedral 
hidden subgroup problem [Regev02]

• Major open problem: 
find quantum algorithms for lattices

The Importance of LatticesThe Importance of Lattices
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• Polytime algorithms for gap 2n loglogn/logn

[LLL82,Schnorr87,AjtaiKumarSivakumar02]

• NP-hardness is known for:
– GapCVP: 2^(log1-εn) [DinurKindlerSafra03]

– GapSVP: √2 [Micciancio98]

Known ResultsKnown Results

1 2n loglogn/logn

NP-hard P

2^(log1-εn)
?
n

Cryptography
[Ajtai96,AjtaiDwork97…]
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Known ResultsKnown Results
Limits on Limits on InapproximabilityInapproximability

•• GapCVPGapCVPn 2 NP∩coNP [LagariasLenstraSchnorr90, 
Banaszczyk93]

•• GapCVPGapCVP√n 2 NP∩coAM  [GoldreichGoldwasser98]

1 2n loglogn/logn

NP-hard P

2^(log1-εn) n√n

NP∩coNPNP∩coAM
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2n loglogn/logn

NP-hard P

2^(log1-εn) n√n

NP∩coNPNP∩coAM

NP∩coNP

GapCVPGapCVP√√nn 2 2 NPNP∩∩coNP    coNP    [[AharonovRegev04AharonovRegev04]]

New ResultsNew Results
Limits on Limits on InapproximabilityInapproximability

GapSVPGapSVP√√n n 2 2 NPNP∩∩coQMA coQMA [[AharonovRegev03AharonovRegev03]]

NP∩coQMA
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From Quantum to ClassicalFrom Quantum to Classical

• One less problem in QMA
• ☺ This is another quantum inspired result 

(e.g., [Kerenidis-deWolf03,Aaronson04])
• The proof is entirely classical and is in 

fact simpler than the original quantum 
proof
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•• Part 1: How to Part 1: How to dequantizedequantize QMA QMA 

•• Part 2: Part 2: GapCVPGapCVP√√nn 2 2 NPNP∩∩coNPcoNP

OutlineOutline
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Part 1:

Dequantizing

Part 1:

Dequantizing
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coGapCVPcoGapCVP√√nn 2 2 NP NP [[AR04AR04]      ]      

coGapSVPcoGapSVP√√n n 2 2 QMA     [QMA     [AR03AR03]]
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• A language Λ2QMA if 9 quantum verifier V such 
that
– 8 x 2 Λ 9 |ηi, V accepts x,η w.p. > ¾
– 8 x ∉ Λ 8 |ηi, V accepts x,η w.p. < ¼

• Equivalently, 
– 8 x 2 Λ 9 |ηi, 

– 8 x ∉ Λ 8 |ηi,  

QMA (again)QMA (again)
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Dequantizing Dequantizing QMA VerifiersQMA Verifiers

• Notice that                                                 

is positive semidefinite and hence the maximum 
of     is obtained when |ηi is an 
eigenvector

• Let |ηx,1i,…,|ηx,Νi be all the eigenvectors of Vx
• Therefore, an equivalent definition is, 

– 8 x 2 Λ 9 i 
– 8 x ∉ Λ 8 i

• Hence, if |ηx,ii can be generated efficiently 
from x,i then the language is in QCMA
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DequantizingDequantizing [AR03] [AR03] 
• [AR03] showed that coGapSVP√n 2 QMA
• A witness to the [AR03] verifier is of the form      

where 

• The tests performed are all ‘shift tests’
• An easy analysis shows that the eigenvectors 

are given by tensor of Fourier vectors, i.e., by

where

for some v1,…,vk
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DequantizingDequantizing [AR03][AR03]
• Since Fourier vectors are easy to generate by 

the quantum Fourier transform, we immediately 
obtain that coGapSVP√n 2 QCMA

• It turns out that the resulting QCMA verifier 
can be implemented by a deterministic classical 
circuit and hence we obtain coGapSVP√n 2 NP

• Moreover, we can simplify the proof and even 
strengthen it to 

coGapCVP√n 2 NP     [AR04]
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Part 2:

coGapCVP√n in NP

Part 2:

coGapCVP√√n in NP



20

Given:Given:

-- Lattice L (by vLattice L (by v11,v,v22,,……,,vvnn))
-- Point vPoint v

We want:We want:

A witness for the fact thatA witness for the fact that
v is v is farfar from Lfrom L

Our GoalOur Goal
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Overview Overview 
Step 1Step 1:: Define fDefine f

•• Its value depends on the distance from L:Its value depends on the distance from L:
–– Almost zero if distance > Almost zero if distance > √√n n 
–– More than zero if distance < More than zero if distance < √√loglog

Step 2Step 2:: Encode fEncode f
Show that the function f has a short descriptionShow that the function f has a short description

CVPP approximation algorithmCVPP approximation algorithm

Step 3Step 3:: VerifyVerify ff
Verify that the function is nonVerify that the function is non--negligible close to Lnegligible close to L



22

Step 1: 

Define f

Step 1: 

Define f
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The function fThe function f
Consider the Gaussian:

Periodize over L:

Normalize by g(0):

∑
∈

−−=
Ly

yxexg
2||)( π

2||xe π−

)0(
)()( g
xgxf =
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The function f
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f distinguishes between far and f distinguishes between far and 
close vectorsclose vectors

(a) d(x,L)≥√n         f(x)≤2-Ω(n)

(b) d(x,L)≤√logn   f(x)>n-5

Proof: (a) Banaszczyk93 (simple for one Gaussian)

(b) Not too difficult
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Step 2: 

Encode f

Step 2: 

Encode f



27

The function f (again)The function f (again)

∑
∈

−−=
Ly

yxexg
2||)( π

)0(
)()( g
xgxf =

LetLet’’s consider its Fourier transform !s consider its Fourier transform !
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is a probability measureis a probability measure

{ }LxZxwwL ∈∀∈〉〈= ,|*

Claim:Claim: f is a probability f is a probability 
measure on Lmeasure on L**
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f is an expectationf is an expectation

∑
∈

〉〈=
*

,2)(ˆ)(
Lw

wxiewfxf π

In fact, itIn fact, it is an expectation of is an expectation of 
a a realreal variable between variable between --1 and 1:1 and 1:
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Encoding fEncoding f

(Chernoff)
This is true even pointwise!

),2cos()( ˆ 〉〈=
∈

wxExf
fw

π
Pick W=(wPick W=(w11,w,w22,,……,,wwNN)) with N=poly(n)with N=poly(n)
according to the f distribution on L*according to the f distribution on L*
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The Approximating Function 

∑
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with N=1000 dual vectors
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This concludes Step 2: Encode f

The encoding is a list W of vectors in L*
fW(x) ≈ f(x)

This concludes Step 2: Encode f

The encoding is a list W of vectors in L*
fW(x) ≈ f(x)
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Interlude: CVPPInterlude: CVPP

GapCVPP 
Solve GapCVP on a preprocessed lattice (allowed 
infinite computational power, but before seeing v)

Algorithm for GapCVPP:
Prepare the function fW in advance;
When given v, calculate fW(v).

Algorithm for GapCVPP√(n/logn) , improving the
GapCVPPn of [Regev03]
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The input is L and v
The witness is a list of vectors 

W = (w1 , … ,wN)

Verify that fW is non-negligible near L

∑
=

〉〈=
N

j
jNW wxxf

1

1 ),2cos()( π

Back to Back to coGapCVPcoGapCVP√√nn in NPin NP
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Step 3:

Verify fW

Step 3:

Verify fW
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The Verifier (First Attempt)The Verifier (First Attempt)
Accepts iff

1. fW (v) < n-10, and
2. fW(x) > n-5 for all x within distance √logn from L

• Completeness and soundness would follow

• But: how to check (2) ? 
-- First check that fW is periodic over L (true if W in L*)
-- Then check that >n-5 around origin

• We don’t know how to do this for distance √logn

• We do this for distance 0.01

0.01
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The Verifier (Second Attempt)The Verifier (Second Attempt)
Accepts iff 
1. fW (v) < n-10, and
2.   w1,…,wN      L*, and
3.

∈
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The Verifier (Second Attempt)The Verifier (Second Attempt)
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Accepts iff 
1. fW (v) < n-10, and
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within distance .01 of the origin:
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The Final VerifierThe Final Verifier
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Accepts iff 
1. fW (v) < n-10, and
2.   w1,…,wN      L*, and
3.

∈
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The Final VerifierThe Final Verifier
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ConclusionConclusion

•• Main result: Main result: GapCVPGapCVP√√nn 22 NP NP ∩∩ coNPcoNP

•• An algorithm for An algorithm for GapCVPPGapCVPP√√(n/(n/lognlogn))
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Open ProblemsOpen Problems
•• Can the containment in NPCan the containment in NP∩∩coNPcoNP be improved be improved 

to to √√(n/(n/lognlogn) or even below?) or even below?

•• Can similar ideas work for problems such as Can similar ideas work for problems such as 
Graph Isomorphism ?Graph Isomorphism ?

•• Other Other ‘‘quantum inspiredquantum inspired’’ results ?results ?

•• Find a subFind a sub--exponential time quantum exponential time quantum 
algorithm for lattice problemsalgorithm for lattice problems

•• Find a polynomial time quantum algorithm for Find a polynomial time quantum algorithm for 
solving solving GapSVPGapSVP with subwith sub--exponential gapsexponential gaps


