$GapSVP_{\sqrt{n}}$ and $GapCVP_{\sqrt{n}}$ are in NP \cap coNP

Dorit Aharonov

Oded Regev

NP, QCMA and QMA

- A language $\Lambda 2NP$ if 9 classical deterministic verifier V such that
 - $8 \times 2 \wedge 9 w$, V accepts x,w
 - $8 \times \notin \Lambda 8 \text{ w}$, V rejects x,w
- A language A2QCMA if 9 quantum verifier V such that
 - $8 \times 2 \land 9 w$, V accepts x, w w.p. > $\frac{3}{4}$
 - $8 \times \notin \Lambda 8 \text{ w}$, V accepts x, w w.p. < $\frac{1}{4}$
- A language A2QMA if 9 quantum verifier V such that
 - 8 x 2 Λ 9 |ηi, V accepts x,η w.p. > ³/₄
 - $8 \times \notin \Lambda 8 |\eta i, V \text{ accepts } \times, \eta \text{ w.p. } < \frac{1}{4}$

NP, QCMA and QMA

Lattices

- Basis:
 - v_1, \dots, v_n vectors in \mathbb{R}^n
- The lattice is

 $L=\{a_1v_1+...+a_nv_n | a_i integers\}$

Shortest Vector Problem (SVP)

- GapSVP_β: Given a lattice, decide if the length of the shortest vector is:
 - YES: less than 1
 - NO: more than β

Closest Vector Problem (CVP)

 GapCVP_β: Given a lattice and a point v, decide if the distance of v from the lattice is:

- YES: less than 1
- NO: more than β

• GapSVP_{β} is easier than GapCVP_{β} [GoldreichMicciancioSafraSeifert99]

The Importance of Lattices

- Lattice problems are believed to be very hard classically
- They are used in strong cryptosystems
 [AjtaiDwork97,Regev03]
- Some connections are known to the dihedral hidden subgroup problem [Regev02]
- Major open problem: find quantum algorithms for lattices

Known Results Polytime algorithms for gap 2^{n loglogn/logn} [LLL82,Schnorr87,AjtaiKumarSivakumar02]

- NP-hardness is known for:
 - GapCVP: 2^(log^{1-e}n) [DinurKindlerSafra03]
 - GapSVP: $\sqrt{2}$ [Micciancio98]

Known Results Limits on Inapproximability

- GapCVP_n 2 NP∩coNP [LagariasLenstraSchnorr90, Banaszczyk93]
- GapCVP_{√n} 2 NP∩coAM [GoldreichGoldwasser98]

New Results Limits on Inapproximability

From Quantum to Classical

- One less problem in QMA
- This is another quantum inspired result (e.g., [Kerenidis-deWolf03, Aaronson04])
- The proof is entirely classical and is in fact simpler than the original quantum proof

Part 1: How to dequantize QMA

• Part 2: $GapCVP_{\sqrt{n}}$ 2 NP \cap coNP

Part 1:

Dequantizing

$coGapSVP_{\sqrt{n}} 2 QMA$ [AR03] $coGapCVP_{\sqrt{n}} 2 NP$ [ARO4]

QMA (again)

- A language A2QMA if 9 quantum verifier V such that
 - 8 x 2 Λ 9 |ηi, V accepts x,η w.p. > ³/₄
 - $8 \times \notin \Lambda 8 |\eta i, V \text{ accepts } \times, \eta \text{ w.p. } < \frac{1}{4}$
- · Equivalently,
 - 8 x 2 Λ 9 |ηi,

 $\langle \eta | \Pi' V_x^{\dagger} \Pi V_x \Pi' | \eta
angle > 3/4$

- 8 x ∉ Λ 8 |ηi,

 $\langle \eta | \Pi' V_x^\dagger \Pi V_x \Pi' | \eta
angle < 1/4$

Dequantizing QMA Verifiers

Notice that

$\Pi' V_x^{\dagger} \Pi V_x \Pi' = \Pi'^{\dagger} V_x^{\dagger} \Pi^{\dagger} \Pi V_x \Pi'$

is positive semidefinite and hence the maximum of $\langle \eta | \Pi' V_x^{\dagger} \Pi V_x \Pi' | \eta \rangle$ is obtained when $|\eta|$ is an eigenvector

- Let $|\eta_{x,1}i,...,|\eta_{x,N}i$ be all the eigenvectors of V_x
- Therefore, an equivalent definition is,
 - $8 \times 2 \wedge 9$ i $\langle \eta_{x,i} | \Pi' V_x^{\dagger} \Pi V_x \Pi' | \eta_{x,i} \rangle > 3/4$
 - $8 \times \notin \Lambda 8$ i $\langle \eta_{x,i} | \Pi' V_x^{\dagger} \Pi V_x \Pi' | \eta_{x,i} \rangle < 1/4$
- Hence, if $|\eta_{x,i}|$ can be generated efficiently from x, i then the language is in QCMA

Dequantizing [AR03]

- [AR03] showed that coGapSVP_{vn} 2 QMA
- A witness to the [AR03] verifier is of the form $|lpha_1
 angle\otimes\ldots\otimes|lpha_k
 angle$

where
$$lpha_i = \sum_{x \in \mathbb{R}^n} f_i(x) |x
angle$$

- The tests performed are all 'shift tests'
- An easy analysis shows that the eigenvectors are given by tensor of Fourier vectors, i.e., by $|\alpha_1\rangle\otimes\ldots\otimes|\alpha_k\rangle$

where

$$lpha_i = \sum_{x \in \mathbb{R}^n} e^{2\pi i \langle x, v_i
angle} |x
angle$$

for some v_1, \dots, v_k

Dequantizing [AR03]

- Since Fourier vectors are easy to generate by the quantum Fourier transform, we immediately obtain that coGapSVP_{√n} 2 QCMA
- It turns out that the resulting QCMA verifier can be implemented by a deterministic classical circuit and hence we obtain $coGapSVP_{vn} 2 NP$
- Moreover, we can simplify the proof and even strengthen it to

 $coGapCVP_{\sqrt{n}} 2 NP$ [AR04]

Part 2:

COCRAPCYP IN NP

Given:

We want:

A witness for the fact that v is far from L

Step 1: Define f Its value depends on the distance from L: Almost zero if distance > √n More than zero if distance < √log

Step 2: Encode f Show that the function f has a short description
CVPP approximation algorithm
Step 3: Verify f

Verify that the function is non-negligible close to L

Define f

The function f

f distinguishes between far and close vectors

(a) $d(x,L) \ge \sqrt{n} \rightarrow f(x) \le 2^{-\Omega(n)}$ (b) $d(x,L) \le \sqrt{\log n} \rightarrow f(x) > n^{-5}$

Proof: (a) Banaszczyk93 (simple for one Gaussian) (b) Not too difficult

Step 2:

Encode i

Let's consider its Fourier transform !

\hat{f} is a probability measure

<u>Claim</u>: \hat{f} is a probability measure on L*

$$L^* = \{ w \, | \, \langle w, x \rangle \in Z \quad \forall x \in L \}$$

Proof: g is a convolution of a Gaussian and δ_L $\hat{g}(w) = e^{-\pi |x|^2} \cdot \hat{\delta}_L = \begin{cases} e^{-\pi |w|^2} & w \in L^* \\ 0 & o.w. \end{cases}$ $\hat{f}(w) = \frac{\hat{g}(w)}{g(0)} = \frac{e^{-\pi |w|^2}}{\sum_{z \in L^*} e^{-\pi |z|^2}}$

f is an expectation

$$f(x) = \sum_{w \in L^*} \hat{f}(w) e^{2\pi i \langle x, w \rangle}$$
$$= E_{w \in \hat{f}} \left(e^{2\pi i \langle x, w \rangle} \right)$$

In fact, it is an expectation of a real variable between -1 and 1:

 $f(x) = E_{w \in \hat{f}}(\cos(2\pi \langle x, w \rangle))$

Encoding f $f(x) = E_{w \in \hat{f}} \cos(2\pi \langle x, w \rangle)$ Pick $W=(w_1, w_2, ..., w_N)$ with N=poly(n)according to the f distribution on L* $f_W(x) = \frac{1}{N} \sum \cos(2\pi \langle x, w_i \rangle)$ $f(x) \approx f_W(x)$ (Chernoff) This is true even pointwise!

The Approximating Function $f_W(x) = \frac{1}{N} \sum_{j=1}^{N} \cos(2\pi \langle x, w_j \rangle)$

This concludes <mark>Step 2: Encode f</mark>

The encoding is a list W of vectors in L* $f_w(x) \approx f(x)$

Interlude: CVPP

GapCVPP Solve GapCVP on a preprocessed lattice (allowed infinite computational power, but before seeing v)

Algorithm for GapCVPP: Prepare the function f_W in advance; When given v, calculate f_W(v).

→ Algorithm for $GapCVPP_{\sqrt{(n/logn)}}$, improving the $GapCVPP_n$ of [Regev03]

Back to $coGapCVP_{\sqrt{n}}$ in NP

The input is L and v The witness is a list of vectors W = (w₁, ..., w_N)

$$f_W(x) = \frac{1}{N} \sum_{j=1}^N \cos(2\pi \langle x, w_j \rangle)$$

Verify that f_w is non-negligible near L

Verify f_w

The Verifier (First Attempt)

Accepts iff 1. $f_W(v) < n^{-10}$, and 2. $f_W(x) > n^{-5}$ for all x within distance viegn from L

- Completeness and soundness would follow
- But: how to check (2)?
 - First check that f_W is periodic over L (true if W in L*)
 - Then check that >n⁻⁵ around origin

- We don't know how to do this for distance $\sqrt{\log n}$
- We do this for distance 0.01

The Verifier (Second Attempt)

Accepts iff 1. $f_W(v) < n^{-10}$, and 2. $w_1, \dots, w_N \in L^*$, and 3. $\forall x \in \Re^n, \forall u, \frac{\partial^2 f_W(x)}{\partial^2 x_u} \le 100$

2 implies that f_W is periodic on L: $\forall x \in \Re^n, \forall y \in L, f_W(x+y) = \frac{1}{N} \sum_{j=1}^N \cos(2\pi \langle x+y, w_j \rangle)$ $= \frac{1}{N} \sum_{j=1}^N \cos(2\pi \langle x, w_j \rangle + 2\pi \langle y, w_j \rangle) = f_W(x)$

The Verifier (Second Attempt)

Accepts iff 1. $f_W(v) < n^{-10}$, and 2. $w_1, \dots, w_N \in L^*$, and 3. $\forall x \in \Re^n, \forall u, \frac{\partial^2 f_W(x)}{\partial^2 x_u} \le 100$

3 implies that f_W is at least .8 1.2 within distance .01 of the origin: $\begin{pmatrix} 1.2 \\ 1 \\ 0.8 \end{pmatrix}$

$$f_W(0) = 1$$

$$\frac{\partial f_W}{\partial x_u}(0) = 0$$

The Final Verifier

3 checks that in any direction the w's are not too long:

$$\|WW^T\| = \max_{|u|=1} uWW^Tu^T = \max_{|u|=1} \sum_{j=1}^N \langle u, w_j \rangle^2$$

The Final Verifier

$$\frac{\partial^2 f_W(x)}{\partial^2 x_u} = \frac{-4\pi^2}{N} \sum_{j=1}^N \langle w_j, u \rangle^2 \cos(2\pi \langle w_j, x \rangle)$$
$$\left| \frac{\partial^2 f_W(x)}{\partial^2 x_u} \right| \le \frac{4\pi^2}{N} \sum_{j=1}^N \langle w_j, u \rangle^2 = \frac{4\pi^2}{N} uWW^T u^T \le \frac{4\pi^2}{N} \left\| WW^T \right\| \le 100$$

Conclusion

• Main result: $GapCVP_{\sqrt{n}} 2 NP \cap coNP$

• An algorithm for $GapCVPP_{\sqrt{(n/logn)}}$

Open Problems

- Can the containment in NP∩coNP be improved to √(n/logn) or even below?
- Can similar ideas work for problems such as Graph Isomorphism ?
- Other 'quantum inspired' results ?
- Find a sub-exponential time quantum algorithm for lattice problems
- Find a polynomial time quantum algorithm for solving GapSVP with sub-exponential gaps