$\operatorname{GapSVP}_{\sqrt{ } n}$ and $\operatorname{GapCVP}_{\sqrt{ } n}$ are in $N P \cap \operatorname{coNP}$

Dorit Aharonov

Oded Regev

NP, QCMA and QMA

- A language $\Lambda 2 N P$ if 9 classical deterministic verifier V such that
- $8 \times 2 \wedge 9 w, V$ accepts \times, w
- $8 x \notin \Lambda 8 w, V$ rejects \times, w
- A language $\Lambda 2 Q C M A$ if 9 quantum verifier V such that
$-8 \times 2 \Lambda 9 w, V$ accepts \times,w w.p. $>\frac{3}{4}$
- $8 x \notin \Lambda 8 \mathrm{w}, \mathrm{V}$ accepts \times,w w.p. $<\frac{1}{4}$
- A language $\Lambda 2 Q M A$ if 9 quantum verifier V such that
$-8 \times 2 \wedge 9 \mid \eta i, V$ accepts \times, η w.p. $>\frac{3}{4}$
- $8 \times \notin \Lambda 8 \mid \eta i, V$ accepts \times, η w.p. $<\frac{1}{4}$

NP, QCMA and QMA

Lattices

- Basis:
$\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$ vectors in R^{n}
- The lattice is

$$
\begin{array}{lll}
2 v_{1} & v_{1}+v_{2} & 2 v_{2}
\end{array}
$$

$L=\left\{a_{1} v_{1}+\ldots+a_{n} v_{n} \mid a_{i}\right.$ integers $\} \int_{0}^{v_{1}} \int_{2}^{v_{2}} \frac{2 v_{2}-2 v_{2}}{2 v_{1}}$

Shortest Vector Problem (SVP)

- GapSVP ${ }_{\beta}$: Given a lattice, decide if the length of the shortest vector is:
- YES: less than 1
- NO: more than β

Closest Vector Problem (CVP)

- GapCVP : Given a lattice and a point v, decide if the distance of v from the lattice is:
- YES: less than 1
- NO: more than β
- GapSVP ${ }_{\beta}$ is easier than GapCVP $_{\beta}$ [GoldreichMicciancioSafraSeifert99]

The Importance of Lattices

- Lattice problems are believed to be very hard classically
- They are used in strong cryptosystems [AjtaiDwork97,Regev03]
- Some connections are known to the dihedral hidden subgroup problem [Regev02]
- Major open problem:
find quantum algorithms for lattices

Known Results

- Polytime algorithms for gap $2^{n} \log \operatorname{logn/logn}$ [LLL82,Schnorr87,AjtaiKumarSivakumar02]
- NP-hardness is known for:
- GapCVP: $2^{\wedge}\left(\log ^{1-8} n\right)$ [DinurKindlerSafra03]
- GapSVP: 2 [Micciancio98]
$12^{\wedge}\left(\log ^{1-a} n\right)$

NP-hard

Known Results Limits on Inapproximability

- GapCVP 22 NP $\cap c o N P$ [LagariasLenstraSchnorr90, Banaszczyk93]
- GapCVP $_{\sqrt{ } n} 2$ NPกcoAM [GoldreichGoldwasser98]

New Results

Limits on Inapproximability

GapSVP $_{\sqrt{ } n} 2$ NP $\cap c o Q M A$ [AharonovRegev03]
$\operatorname{GapCVP}_{\sqrt{ }} 2$ NP $\cap c o N P \quad$ [AharonovRegev04]
$2^{\wedge}\left(\log ^{1-8} n\right) \quad V_{n} \quad n \quad 2^{n \log \log n / \log n}$

NP-hard
$\stackrel{\text { NPrecaAM }}{\text { NPRCOQMA }}$ NProonP

NPncoNP

From Quantum to Classical

- © One less problem in QMA
- (). This is another quantum inspired resul \dagger (e.g., [Kerenidis-deWolfo3,Aaronson04])
- The proof is entirely classical and is in fact simpler than the original quantum proof

Outline

- Part 1: How to dequantize QMA
- Part 2: GapCVP ${ }_{\sqrt{ } n} 2$ NP ${ }^{2} c o N P$

Part

Dequantiany

$\operatorname{coGapSVP}_{\sqrt{ } n} 2$ QMA [ARO3]

$\operatorname{coGapCVP}_{\sqrt{ } n} 2$ NP
[ARO4]

QMA (again)

- A language $\Lambda 2 Q M A$ if 9 quantum verifier V such that
- $8 \times 2 \wedge 9 \mid \eta i, V$ accepts \times, η w.p. $>\frac{3}{4}$
- $8 \times \notin \Lambda 8 \mid \eta i, V$ accepts \times, η w.p. $<\frac{1}{4}$
- Equivalently,
- $8 \times 2 \wedge 9 \mid \eta i$,
$\langle\eta| \Pi^{\prime} V_{x}^{\dagger} \Pi V_{x} \Pi^{\prime}|\eta\rangle>3 / 4$
- $8 \times \notin \Lambda 8 \mid \eta i$,
$\langle\eta| \Pi^{\prime} V_{x}^{\dagger} \Pi V_{x} \Pi^{\prime}|\eta\rangle<1 / 4$

Dequantizing QMA Verifiers

- Notice that

$$
\Pi^{\prime} V_{x}^{\dagger} \Pi V_{x} \Pi^{\prime}=\Pi^{\dagger} V_{x}^{\dagger} \Pi^{\dagger} \Pi V_{x} \Pi^{\prime}
$$

is positive semidefinite and hence the maximum of $\langle\eta| \Pi^{\prime} V_{x}^{\dagger} \Pi V_{x} \Pi^{\prime}|\eta\rangle$ is obtained when $\mid \eta i$ is an eigenvector

- Let $\left|\eta_{x, 1} 1, \ldots,\right| \eta_{x, N}$ i be all the eigenvectors of V_{x}
- Therefore, an equivalent definition is,

$$
\begin{aligned}
& -8 \times 2 \Lambda 9 \mathrm{i}\left\langle\eta_{x, i}\right| \Pi^{\prime} V_{x}^{\dagger} \Pi V_{x} \Pi^{\prime}\left|\eta_{x, i}\right\rangle>3 / 4 \\
& -8 \times \notin \Lambda \mathrm{i}\left\langle\eta_{x, i}\right| \Pi^{\prime} V_{x}^{\dagger} \Pi V_{x} \Pi^{\prime}\left|\eta_{x, i}\right\rangle<1 / 4
\end{aligned}
$$

- Hence, if $\mid \eta_{x, i}$ can be generated efficiently from x, i then the language is in QCMA

Dequantizing [ARO3]

- [ARO3] showed that coGapSVP ${ }_{\sqrt{ } n} 2$ QMA
- A witness to the [AR03] verifier is of the form

$$
\left|\alpha_{1}\right\rangle \otimes \ldots \otimes\left|\alpha_{k}\right\rangle
$$

where

$$
\alpha_{i}=\sum_{x \in \mathbb{R}^{n}} f_{i}(x)|x\rangle
$$

- The tests performed are all 'shift tests'
- An easy analysis shows that the eigenvectors are given by tensor of Fourier vectors, i.e., by

$$
\left|\alpha_{1}\right\rangle \otimes \ldots \otimes\left|\alpha_{k}\right\rangle
$$

where

$$
\alpha_{i}=\sum_{x \in \mathbb{R}^{n}} e^{2 \pi i\left\langle x, v_{i}\right\rangle}|x\rangle
$$

for some $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$

Dequantizing [AR03]

- Since Fourier vectors are easy to generate by the quantum Fourier transform, we immediately obtain that coGapSVP ${ }_{\sqrt{ }} 2$ QCMA
- It turns out that the resulting QCMA verifier can be implemented by a deterministic classical circuit and hence we obtain coGapSVP ${ }_{\sqrt{ }} 2$ NP
- Moreover, we can simplify the proof and even strengthen it to

$$
\operatorname{coGapCVP}_{\sqrt{ }} 2 \text { NP [ARO4] }
$$

Part2:

GOHADHMP IT

Our Goal

Given:

$$
\begin{aligned}
& \text { - Lattice L }\left(\text { by } v_{1}, v_{2}, \ldots, v_{n}\right) \\
& \text { - Point } v
\end{aligned}
$$

We want:
A witness for the fact that v is far from L

Overview

Step 1: Define f

- Its value depends on the distance from L :
- Almost zero if distance $>\sqrt{ } n$
- More than zero if distance < V \log

Step 2: Encode f

Show that the function f has a short description
CVPP approximation algorithm
Step 3: Verify f
Verify that the function is non-negligible close to L

Step 1:

Deinef

The function f

Consider the Gaussian:

$$
e^{-\pi|x|^{2}}
$$

Periodize over L:

Normalize by $g(0)$:
$y \in L$

The function f

f distinguishes between far and close vectors

(a) $d(x, L) \geq \sqrt{n}$
$\rightarrow f(x) \leq 2^{-\Omega(n)}$
(b) $d(x, L) \leq \sqrt{ } \log n \rightarrow f(x)>n^{-5}$

Proof:
(a) Banaszczyk93 (simple for one Gaussian)
(b) Not too difficult

Sten2:

Encorilef

The function f (again)

$$
\begin{aligned}
& g(x)=\sum_{y \in L} e^{-\pi|x-y|^{2}} \\
& f(x)=\frac{g(x)}{g(0)}
\end{aligned}
$$

Let's consider its Fourier transform !

\hat{f} is a probability measure

Claim: f is a probability

 measure on $L^{*}$$$
L^{*}=\{w \mid\langle w, x\rangle \in Z \quad \forall x \in L\}
$$

Proof: g is a convolution of a Gaussian and δ_{L}
$\hat{g}(w)=e^{-\pi \mid x x^{2}} \cdot \hat{\delta}_{L}=\left\{\begin{array}{cc}e^{-\pi|w|^{2}} & w \in L^{*} \\ 0 & o . W .\end{array}\right.$
$\hat{f}(w)=\frac{\hat{\hat{z}}(w)}{g(0)}=\frac{e^{-x|w|^{2}}}{\sum_{z \in u e^{-x}| |^{2}}^{2}}$

f is an expectation

$$
\begin{aligned}
f(x) & =\sum_{w \in L^{*}} \hat{f}(w) e^{2 \pi i\langle x, w\rangle} \\
& =E_{w \in \hat{f}}\left(e^{2 \pi i\langle x, w\rangle}\right)
\end{aligned}
$$

In fact, it is an expectation of a real variable between -1 and 1:

$$
f(x)=E_{w \in \hat{f}}(\cos (2 \pi\langle x, w\rangle))
$$

Chernoff

Encoding f

$$
f(x)=E_{w \in \hat{f}} \cos (2 \pi\langle x, w\rangle)
$$

Pick $\mathrm{W}=\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{N}}\right)$ with $\mathrm{N}=$ poly (n) according to the f distribution on L^{*}

$$
f_{W}(x)=\frac{1}{N} \sum_{j=1}^{N} \cos \left(2 \pi\left\langle x, w_{j}\right\rangle\right)
$$

$(x) \approx f_{W}(x)_{(\text {Chernoff })}$
This is true even pointwise!

The Approximating Function

$$
f_{W}(x)=\frac{1}{N} \sum_{j=1}^{N} \cos \left(2 \pi\left\langle x, w_{j}\right\rangle\right)
$$

with $\mathrm{N}=1000$ dual vectors

This concludes sten 2:Encoilof

The encoiling is a list W of vectors in L* $f_{W}[X] \approx f[X]$

Interlude: CVPP

GapCVPP

Solve GapCVP on a preprocessed lattice (allowed infinite computational power, but before seeing v)

Algorithm for GapCVPP:
Prepare the function f_{w} in advance:
When given v, calculate $f_{w}(v)$.
\rightarrow Algorithm for $\operatorname{GapCVPP}_{\sqrt{(n / l o g n)}}$, improving the GapCVPP $_{n}$ of [Regev03]

Back to coGapCVP ${ }_{\sqrt{ } n}$ in NP

The input is L and v
The witness is a list of vectors

$$
W=\left(w_{1}, \ldots, w_{N}\right)
$$

$$
f_{W}(x)=\frac{1}{N} \sum_{j=1}^{N} \cos \left(2 \pi\left\langle x, w_{j}\right\rangle\right)
$$

Verify that f_{w} is non-negligible near L

Sten 3 :

Varivim

The Verifier (First Attempt)

Accepts iff

1. $f_{w}(v)<n^{-10}$, and
2. $f_{w}(x)>n^{-5}$ for all x within distance viogn from L

- Completeness and soundness would follow
- But: how to check (2) ?
- First check that f_{w} is periodic over L (true if W in L^{*})
- Then check that $>n^{-5}$ around origin
- We don't know how to do this for distance Vlogn
- We do this for distance 0.01

The Verifier (Second Attempt)

Accepts iff

1. $f_{w}(v)<n^{-10}$, and
2. $w_{1}, \ldots, w_{N} \in L^{*}$, and
3. $\forall x \in \mathfrak{R}^{n}, \forall u,\left|\frac{\partial^{2} f_{W}(x)}{\partial^{2} x_{u}}\right| \leq 100$

2 implies that f_{w} is periodic on L :

$$
\begin{array}{r}
\forall x \in \mathfrak{R}^{n}, \forall y \in L, f_{W}(x+y)=\frac{1}{N} \sum_{j=1}^{N} \cos \left(2 \pi\left\langle x+y, w_{j}\right\rangle\right) \\
=\frac{1}{N} \sum_{j=1}^{N} \cos \left(2 \pi\left\langle x, w_{j}\right\rangle+2 \pi\left\langle\hat{z}, w_{j}\right\rangle\right)=f_{W}(x)
\end{array}
$$

The Verifier (Second Attempt)

Accepts iff

1. $f_{w}(v)<n^{-10}$, and
2. $w_{1}, \ldots, w_{N} \in L^{*}$, and
3. $\forall x \in \mathfrak{R}^{n}, \forall u,\left|\frac{\partial^{2} f_{W}(x)}{\partial^{2} x_{u}}\right| \leq 100$

3 implies that f_{w} is at least . 8 within distance .01 of the origin:

The Final Verifier

Accepts iff

1. $f_{w}(v)<n^{-10}$, and
2. $w_{1}, \ldots, w_{N} \in L^{*}$, and
3. $\left\|W W^{\top}\right\|<N$ where $W=$

3 checks that in any direction the w's are not too long:

$$
\left\|W W^{T}\right\|=\max _{|u|=1} u W W^{T} u^{T}=\max _{|u|=1} \sum_{j=1}^{N}\left\langle u, w_{j}\right\rangle^{2}
$$

The Final Verifier

Accepts jiff

1. $f_{w}(v)<n^{-10}$, and
2. $w_{1}, \ldots, w_{N} \in L^{*}$, and
3. $\left|\left|W W^{\top} \|\right|<N\right.$ where $W=$

$$
\begin{aligned}
& \frac{\partial^{2} f_{W}(x)}{\partial^{2} x_{u}}=\frac{-4 \pi^{2}}{N} \sum_{j=1}^{N}\left\langle w_{j}, u\right\rangle^{2} \cos \left(2 \pi\left\langle w_{j}, x\right\rangle\right) \\
& \left|\frac{\partial^{2} f_{W}(x)}{\partial^{2} x_{u}}\right| \leq \frac{4 \pi^{2}}{N} \sum_{j=1}^{N}\left\langle w_{j}, u\right\rangle^{2}=\frac{4 \pi^{2}}{N} u W W^{T} u^{T} \leq \frac{4 \pi^{2}}{N}\left\|W W^{T}\right\| \leq 100
\end{aligned}
$$

Conclusion

- Main result: GapCVP $_{\sqrt{ } n} 2$ NP $\cap \operatorname{coNP}$
- An algorithm for $\operatorname{GapCVPP}_{\sqrt{(n / l o g n)}}$

Open Problems

- Can the containment in NPกcoNP be improved to $\sqrt{ }(n / \log n)$ or even below?
- Can similar ideas work for problems such as Graph Isomorphism?
- Other 'quantum inspired' results ?
- Find a sub-exponential time quantum algorithm for lattice problems
- Find a polynomial time quantum algorithm for solving GapSVP with sub-exponential gaps

