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NP, QCMA and QMA

» A language A2NP if 9 classical deterministic
verifier V such that

- 8x2A9w,Vaccepts x,w

- 8x¢ A8w, Vrejects xw

* A language A2QCMA if 9 quantum verifier V such
that
- 8x2A9w,Vaccepts x,ww.p.> %

- 8x ¢ A8w,Vaccepts x,ww.p. <z

* A language A2QMA if 9 quantum verifier V such
that

- 8x2A9|ni, Vaccepts xnwp.> %

1

- 8x ¢ A8 |ni, Vaccepts xnwp. <%



NP, QCMA and QMA

QMA
QCMA




Lattices

* Basis:
Vll'“lvn VZCTOPS in Rn A4 W W
+ The lattice is 2y, ViV, 20,
2V,-V

Vq v, ©V27Vi
L={ayvi+..+a,v,| gjintegers)
2V,-2V;
o



Shortest Vector Problem (SVP)

+ GapSVP;: Given a lattice, decide if the length of
the shortest vector is:

- YES: less than 1

- NO: more than



Closest Vector Problem (CVP)

* GapCVP;: Given a lattice and a point v, decide if the distance
of v from the lattice is:

- YES: less than 1

- NO: more than B

* GGPSVPB is easier than GGPCVPB [GoldreichMicciancioSafraSeifert9s |



The Importance of Lattices

* Lattice problems are believed to be very
hard classically

* They are used in strong cryptosystems
[AjtaiDwork97 RegevO3 |

- Some connections are known to the dihedral
hidden subgroup problem [Regev02]

* Major open problem:
find quantum algorithms for lattices



Known Results

+ Polytime algorithms for gap 2n'eglogn/legn
[LLL82,Schnorr87,AjtaiKumarSivakumar02 ]

- NP-hardness is known for:

= GGPCVP: 2"(|091'8n) [DinurKindlerSafraOS]
= GGPSVPI \/2 [Micciancio98]
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[Ajtai96,AjtaiDwork97...]



Known Results
Limits on Inapproximability

° GGpCVPnz NPNcoNP [LagariasLenstraSchnorr90,
Banaszczyk93 ]

° GGPCVP\/nZ NPnNcoAM [6GoldreichGoldwasser98]
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New Results
Limits on Inapproximability

GapSVP,,, 2 NPncoQMA [AharonovRegev03]
GapCVP,, 2 NPncoNP [AharonovRegev04 ]
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From Quantum to Classical

* ® One less problem in QMA

+ © This is another quantum inspired result
(3-9-, [Kerenidis—deWolfO3,Aaronson04])

* The proof is entirely classical and is in
fact simpler than the original quantum
proof



Outline

* Part 1: How to dequantize QMA

» Part 2: GapCVP,, 2 NPncoNP



Part 1



coGapSVP,, 2 QMA  [Ar03]

coGapCVP,, 2 NP [Ar04]



QMA (again)

* A language A2QMA if 9 quantum verifier V such
that

- 8x2A9|ni, Vaccepts xnwp.> 3

1

- 8x ¢ A8 |ni, Vaccepts x,nw.p.< 3
» Equivalently,
- 8x2A9|nl,

Crrin i 1/ '1 1 4/ 1l l° D>
\',II ]

Vet 1Vl 1 |T]) >
- 8x ¢ A8 |ni,
(m'VINVN|n) < 1/4
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Dequantizing QMA Verifiers

- Notice that
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is positive semidefinite and hence the maximum
of (n|'VINV4MV|n) is obtained when |ni is an
eigenvector

+ Let |nyi,...,Ing i be all the eigenvectors of V,

» Therefore, an equivalen’r definition is,
- 8x2A9i (Ngy |r|’vTr|V Nng ;) > 3/4

7/ - \I/_l—

- 8x ¢ A8 (naz,z“_l Va;rnvévnllnx,z) <1/4

+ Hence, if |n, i can be generated efficiently
from x,i then the language is in QCMA



Dequantizing [ARO3]

+ [ARO3] showed that coGapSVP,,2 QMA
* A witness to the [ARO3] verifier is of the form

[ A T 2 UV WY B A N ) A P |
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where = Y fi(x)|z)
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* The tests performed are all ‘shift tests’

* An easy analysis shows that the eigenvectors
are given by tensor of Fourier vectors, i.e., by
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for some vy,...,vy



Dequantizing [ARO3]

» Since Fourier vectors are easy to generate by
the quantum Fourier transform, we immediately
obtain that coGapSVP,,2 QCMA

» It turns out that the resulting QCMA verifier
can be implemented by a deterministic classical
circuit and hence we obtain coGapSVP,,,2 NP

* Moreover, we can simplify the proof and even
strengthen it to

coGapCVP,, 2 NP [AR04]



Part 2:

coGanCuP,, in NP



Our Godl
Given:

- Lattice L (by vq,v5,...,v,)
- Point v

We want:

A withess for the fact that
v is far from L



Overview

Step 1
» Tts value depends on the distance from L:
- Almost zero if distance > Vn
- More than zero if distance < Vlog

Step 2:
Show that the function f has a short description

Step 3:
Verify that the function is non-negligible close to L



step 1:



The function f

Consider the Gaussian:
—7|x|’

€

Periodize over L.

g(x) = Ze‘”‘x "

Normalize by g(0):

f(x) =45




The function f




f distinguishes between far and
close vectors

(a) d(x,L)>Vn > f(x)<2-9M
(b) d(x,L)<Vlogn > f(x)>nS

(Cl) BC(”C(SZCZYk93 (simple for one Gaussian)
(b) Not too difficult



step 2:



The function f (again)

g(x)= e

yel
_ gx)
J(X) =

Let's consider its Fourier transform |




f is a probability measure

== {w\ (w,x)e”Z VxeL}
g is a convolution of a Gaussian and &,

g(w) =e‘/”1:'2 5, =+ e wel?

0 oW,

2

A

_ 8w _
W) =g = Ze:emz

zel*

~|w]




f is an expectation

f)= D f(w)er

wel*

_ E 27zi(x,w>)

we i (e

In fact, itis an expectation of
a real variable between -1 and 1:

f(x)=E ; (cos(27(x,w)))



Encoding f
f(x)= Ewef cos(27z(x,w))

Pick W=(wy,w,,... wy) with N=poly(n)
according to the f distribution on L*
N

Jw(x) =D cos2z{x,w;))

J=1

f(x) ~ fW (X) (Chernoff)

This is true even pointwisel!



The Approximating Function
i) =— i cos(2z{x,w,))

with N=1000 dual vectors




This concludes Step 2:

The encodingis alist WofvectorsinL’
£, 00 =~ )



Solve GapCVP on a preprocessed lattice (allowed
infinite computational power, but before seeing v)

Prepare the function f,, in advance;
When given v, calculate f,(v).

= Algorithm for 6GapCVPP /14 . improving the
GapCVPP, of [Regev03]



Back to coGapCVP,,, in NP

The input isL and v
The witness is a list of vectors
W= (wq, ... wy)

fo (X) =~ i cos(2z{x,w,))

J=1

Verify that f,, is non-negligible near L



Verity iy,



The Verifier (First Attempt)

Accepts iff
fw (V) < n'10 and oO*

fw(x) > n> for all x within dis’rancemom L

» Completeness and soundness would follow

* But: how to check () ?

- First check that f, is over L (frue if W in L*)
- Then check that >n

- We don't know how to do this for distance Vlogn
* We do this for distance 0.01




The Verifier (Second Attempt)

Accepts iff
fw (V) <n19 and

Wy,..., Wy € L*, and

2
Vx eR", Vu, g ;W(x) <100
xu

implies that f,, is periodic on L:

N
VxeR",Vyel, f,(x+y)= %ZCOS(Z%’(X-I—)/,W].})

J=1

:%icos(Zn(x,wﬂ + 270 = [ (x)




The Verifier (Second Attempt)

Accepts iff
fw (v) <n19 and
Wq,...,.WN € L*, and

2
Vx eR",Vu, GéW(x) <100
xu

implies that f,, is af least .8 2 --
within distance .01 of the origin: -“-

Jw(0)=1 xgﬁi II
I 0y =0 y

ox,

-0.2



The Final Verifier

Accepts iff
fw (v) <nl9 and
Wy,.. Wy € L*, and Y Y ()
[ IWWT[[<N where W =||w, | w, |...... Wy
\\ N . /)

checks that in any direction the w's are not
too long:

N
T T T 2
WW*|=max, , , uWW u =max, . ) {u,w.)
‘u‘—l ‘u‘—l > "7
=




The Final Verifier

Accepts iff
fw(v) <n10 and
Wq,....WN € L*' anhd [/ \( \ RN
[ IWWT[[<N where W =||w, | w, |...... Wy
52fW(x)

4’ ,
72 = I Z<Wf’u> cos(2z(w;, x))

IS =4 < w10

j=1



Conclusion

* Main result: GapCVP,, 2 NP n coNP

* An algorithm for GapCVPP/109n)



Open Problems

» Can the containment in NPncoNP be improved
to V(n/logn) or even below?

» Can similar ideas work for problems such as
Graph Isomorphism ?

» Other 'quantum inspired’ results ?

» Find a sub-exponential time quantum
algorithm for lattice problems

» Find a polynomial tfime quantum algorithm for
solving GapSVP with sub-exponential gaps



