Multi-Linear Formulas for Determinant and **Permanent** are of Super-Polynomial Size Ran Raz Weizmann Institute

Determinant:

$\sum_{\sigma \in \mathbf{S_n}} \mathsf{sgn}(\sigma) \mathbf{X}_{1,\sigma(1)} \cdots \mathbf{X}_{\mathbf{n},\sigma(\mathbf{n})}$

Permanent:

 $\sum \mathbf{X}_{1,\sigma(1)} \cdots \mathbf{X}_{n,\sigma(n)}$ $\sigma \in \mathbf{Sn}$

Arithmetic Formulas:

Every gate in the formula computes a polynomial in $F[X_1, ..., X_n]$ Example: $(X_1 \ X_1) \ (X_2 + 1)$

Smallest Arithmetic Formula: $n^{O(\log n)}$ **Determinant** [Ber 84]: Permanent [Rys 63]: $O(n^2 \cdot 2^n)$ Are there poly size formulas ? Super polynomial lower bounds are not known for any explicit function (outstanding open problem)

Every gate in the formula computes a multilinear polynomial Example: (X₁ X₂) + (X₂ X₃) (no high powers of variables)

Motivation:

- 1) For many functions, non-multilinear formulas are very counter-intuitive
- 2) Many formulas for Determinant and Permanent are multilinear (Ryser)
- 3) Multilinear polynomials: interesting subclass of polynomials
- 4) Multilinear formulas: strong subclass of formulas (contains other classes)

Multilinear Formulas and Skepticism of Quantum Computing [Aaronson]:

Previous Work:

[NW 95]: Lower bounds for a subclass of constant depth multilinear formulas
[Nis, NW, RS]: Lower bounds for other subclasses of multilinear formulas
[Sch 76, SS 77, Val 83]: Lower bounds for monotone arithmetic formulas

For general multilinear formulas: no lower bound, even for constant depth

Our Result:

Any multilinear formula for the Determinant or the Permanent is of size: $n^{\Omega(\log n)}$

Syntactic Multilinear Formulas: No variable appears in both sons of any product gate **Proposition:** Multilinear formulas and syntactic multilinear formulas are equivalent

Partial Derivatives Matrix [Nis]: f = a multilinear polynomial over $\{y_1, ..., y_m\} \{z_1, ..., z_m\}$ P = set of multilinear monomials in $\{y_1, \ldots, y_m\}$. $|P| = 2^m$ Q = set of multilinear monomials in $\{z_1, \ldots, z_m\}$. $|Q| = 2^m$

Partial Derivatives Matrix [Nis]: f = a multilinear polynomial over $\{y_1, \dots, y_m\}$ $\{z_1, \dots, z_m\}$ P = set of multilinear monomials in $\{y_1, \dots, y_m\}$. $|P| = 2^m$ Q = set of multilinear monomials in $\{z_1, \dots, z_m\}$. $|Q| = 2^m$

$M = M_f = 2^m$ dimensional matrix: For every p P, q Q, $M_f(p,q) =$ coefficient of pq in f

Example: $f(y_1, y_2, z_1, z_2) = 1 + y_1y_2 - y_1z_1z_2$

Mf

Partial Derivatives Method [N,NW] [Nis]: If f is computed by a noncommutative formula of size s then $Rank(M_f) = poly(s)$ [NW,RS]: The same for other classes of formulas Is the same true for multilinear

formulas ?

Counter Example:

$\mathbf{f} = \prod_{i=1}^{m} (\mathbf{y}_i + \mathbf{z}_i)$

M_f is a permutation matrix Rank(M_f) = 2^m

Basic Facts:

1) If f depends on only k variables in $\{y_1, \ldots, y_m\}$ then Rank (M_f) 2^k

2) If f=g+h then Rank(M_f) Rank(M_g) + Rank(M_h) 3) If f=g h then Rank(M_f) = Rank(M_g) Rank(M_h)

Notations:

- Y_f = variables in {y₁,...,y_m} that f depends on
- Z_f = variables in { $z_1, ..., z_m$ } that f depends on
- f is k-unbalanced if $||Y_f| |Z_f|| = k$
- A gate v is k-unbalanced if it computes a k-unbalanced function f

If f=g h and either g or h are k-unbalanced then $Rank(M_f) = 2^{m-k}$ Proof: Either $|Y_g| + |Z_h| = m-k$ or $|Z_g| + |Y_h| = m-k$

s = number of top product gates If every top product gate has a k-unbalanced son then $Rank(M_f)$ s 2^{m-k}

Random Partition:

Partition (at random) $\{X_1, \ldots, X_{2m}\}$ $\{y_1, \ldots, y_m\}$ $\{z_1, \ldots, z_m\}$ and hope to unbalance all top products If v depends on m variables then (w.h.p.) v becomes m^{ϵ} -unbalanced

Random Partition:

Partition (at random) $\{X_1, \ldots, X_{2m}\}$ $\{y_1, \ldots, y_m\}$ $\{z_1, \ldots, z_m\}$ and hope to unbalance all top products

If v depends on m variables then (w.h.p.) v becomes m^e-unbalanced

Problem: With probability m^{-1/2}, v is completely balanced.
If there are > m^{1/2} top products, some of them have balanced sons

Recursion:

A gate that remained balanced is still computed by a multilinear formula. Maybe some of its sons are unbalanced...

Intuition:

Unbalanced gates contribute little to the final rank. Enough to show that every path from a leaf to the root contains an unbalanced gate

Notations:

- Ψ = a multilinear formula (fanin 2) $|\Psi|$ = size of Ψ
- A path from a leaf to the root is central if the degrees along it increase by factors of at most 2 Ψ is k-weak if every central path contains a k-unbalanced gate

Notations:

 Ψ = a multilinear formula (fanin 2) $|\Psi|$ = size of Ψ A path from a leaf to the root is central if the degrees along it increase by factors of at most 2 Ψ is k-weak if every central path contains a k-unbalanced gate

Lemma 1: If Ψ is k-weak then ${
m Rank}(M_{\Psi}) \leq |\Psi| \cdot 2^{m-(k/2)}$

Lemma 2: Assume $|\Psi| < m^{(\log m)/100}$ Partition (at random) $\{X_1, ..., X_{2m}\}$ $\{y_1, ..., y_m\}$ $\{z_1, ..., z_m\}$. Then (w.h.p.): Ψ is k-weak for k=m⁸

Intuition:

A central path contains $\Omega(\log m)$ gates. A gate is not k-unbalanced with prob $m^{-\delta}$ Hence, a central path does not contain a k-unbalanced gate with prob < $m^{-\Omega(\log m)}$ Lemma 1: If Ψ is k-weak then ${\rm Rank}(M_{\Psi}) \leq |\Psi| \cdot 2^{m-(k/2)}$

Corollary: If for every partition Rank(M_f) 2^m then any multilinear formula Ψ for f is of size $m^{\Omega(\log m)}$ Is this true for Determinant or Permanent ?

Not even close...

Determinant and Permanent have n^2 inputs. Rank(M_f) is at most 2^n ... (for any partition)

Step 1: Choose m submatrices of size
2 2 (with different rows and columns).

Step 2: Map submatrix i to either

Yi	Zi
1	1

(

Yi	1
Zi	1

Step 3: Choose a perfect matching of all other rows and columns.

Step 4: Map the perfect matching to 1 and all other entries to 0.

Lemma: Assume $|\Psi| < n^{(\log n)/100}$ Map (as above) $\{X_{i,j}\}$ $\{y_1, \dots, y_m\}$ $\{z_1, \dots, z_m\}$ {0,1}. Then (w.h.p.): Ψ is k-weak for k=n^{ϵ}

Corollary: After the mapping, Rank(M_{Ψ}) < 2^m (w.h.p.)

But Ψ computes the permanent of:

				Y 1	Z ₁				
				1	1				
Y 2	1								
z 2	1								
								1	
		1							
						Y 3	z ₃		
						1	1		
			1						
									1

= the permanent of:

 $= \prod_{i=1}^{m} (\mathbf{y_i} + \mathbf{z_i})$

Thus: Rank(M_{Ψ}) = 2^m (contradiction...)

The proof for the determinant is the same, except that we get the polynomial $\prod_{i=1}^{m} (y_i - z_i)$

$$i=1$$

Additional Research: [R] Exponential lower bounds for constant depth multilinear formulas [Aar] Applications to quantum circuits Open:

- 1) Lower bounds for multilinear proof systems
- 2) Separation of multilinear and nonmultilinear formula size
- 3) Polynomial Identity Testing for multilinear formulas

