

Determinant:

$$
\sum_{\sigma \in \mathbf{S}_{\mathbf{n}}} \operatorname{sgn}(\sigma) \mathbf{X}_{1, \sigma(1)} \cdots \mathbf{X}_{\mathbf{n}, \sigma(\mathbf{n})}
$$

Permanent:

$$
\sum_{\sigma \in \mathbf{S}_{\mathbf{n}}} \mathbf{X}_{1, \sigma(1)} \cdots \mathbf{X}_{\mathbf{n}, \sigma(\mathbf{n})}
$$

Arithmetic Formulas:

Field:

Variables:
F Gates:

$$
X_{1}, \ldots, x_{n}
$$

$$
+, x
$$

Every gate in the formula computes a polynomial in $F\left[X_{1}, \ldots, X_{n}\right]$ Example: $\quad\left(X_{1} \quad X_{1}\right)\left(X_{2}+1\right)$

Smallest Arithmetic Formula:

Determinant
 [Ber 84]: $n^{\mathrm{O}}(\log \mathrm{n})$

 Permanent [Rys 63]: $\mathrm{O}\left(\mathrm{n}^{2} \cdot 2^{\mathrm{n}}\right)$ Are there poly size formulas ? Super polynomial lower bounds are not known for any explicit function (outstanding open problem)

Multilinear Formulas [NW]:

Every gate in the formula computes a multilinear polynomial
Example: $\quad\left(X_{1} \quad X_{2}\right)+\left(X_{2} \quad X_{3}\right)$
(no high powers of variables)

Motivation:

1) For many functions, non-multilinear formulas are very counter-intuitive
2) Many formulas for Determinant and Permanent are multilinear (Ryser)
3) Multilinear polynomials: interesting subclass of polynomials
4) Multilinear formulas: strong subclass of formulas (contains other classes)

Multilinear Formulas and Skepticism of Quantum Computing [Aaronson]:

Previous Work:

[NW 95]: Lower bounds for a subclass of constant depth multilinear formulas
[Nis, NW, RS]: Lower bounds for other subclasses of multilinear formulas
[Sch 76, SS 77, Val 83]: Lower bounds for monotone arithmetic formulas

For general multilinear formulas:
no lower bound, even for constant depth

Our Result:

Any multilinear formula for the Determinant or the Permanent is of size:

$$
\mathbf{n}^{\Omega(\log n)}
$$

Syntactic Multilinear Formulas:

No variable appears in both sons of any product gate
Proposition:
Multilinear formulas and syntactic multilinear formulas are equivalent

Partial Derivatives Matrix [Nis]: $f=a$ multilinear polynomial over

$$
\left\{y_{1}, \ldots, y_{m}\right\} \quad\left\{z_{1}, \ldots, z_{m}\right\}
$$

$P=$ set of multilinear monomials in

$$
\left\{y_{1}, \ldots, y_{m}\right\} . \quad|P|=2^{m}
$$

$Q=$ set of multilinear monomials in

$$
\left\{z_{1}, \ldots, z_{m}\right\} . \quad|Q|=2^{m}
$$

Partial Derivatives Matrix [Nis]:
$f=a$ multilinear polynomial over

$$
\left\{y_{1}, \ldots, y_{m}\right\} \quad\left\{z_{1}, \ldots, z_{m}\right\}
$$

$P=$ set of multilinear monomials in

$$
\left\{y_{1}, \ldots, y_{m}\right\} . \ldots|P|=2^{m}
$$

$Q=$ set of multilinear monomials in

$$
\left\{z_{1}, \ldots, z_{m}\right\} . \quad|Q|=2^{m}
$$

$M=M_{f}=2^{m}$ dimensional matrix:
For every p P, q Q.
$M_{f}(p, q)=$ coefficient of $p q$ in f

Example:

$f\left(y_{1}, y_{2}, z_{1}, z_{2}\right)=1+y_{1} y_{2}-y_{1} z_{1} z_{2}$

M_{f}

1	0	0	0
0	0	0	-1
0	0	0	0
1	0	0	0

$$
1 ; z_{1} z_{2}
$$

Partial Derivatives Method [N,NW]
[Nis]: If f is computed by a noncommutative formula of size s then $\operatorname{Rank}\left(M_{f}\right)=$ poly(s)
[NW,RS]: The same for other classes of formulas

Is the same true for multilinear formulas?

Counter Example:

$$
\mathrm{f}=\prod_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathrm{y}_{\mathrm{i}}+\mathrm{z}_{\mathrm{i}}\right)
$$

M_{f} is a permutation matrix $\operatorname{Rank}\left(M_{f}\right)=2^{m}$

Basic Facts:

1) If f depends on only k variables in $\left\{y_{1}, \ldots, y_{m}\right\}$ then $\operatorname{Rank}\left(M_{f}\right) \quad 2^{k}$
2) If $f=g+h$ then
$\operatorname{Rank}\left(M_{f}\right) \quad \operatorname{Rank}\left(M_{g}\right)+\operatorname{Rank}\left(M_{h}\right)$
3) If $f=g h$ then
$\operatorname{Rank}\left(M_{f}\right)=\operatorname{Rank}\left(M_{g}\right) \quad \operatorname{Rank}\left(M_{h}\right)$

Notations:

$y_{f}=$ variables in $\left\{y_{1}, \ldots, y_{m}\right\}$ that f depends on
$Z_{f}=$ variables in $\left\{z_{1}, \ldots, z_{m}\right\}$ that f depends on
f is k-unbalanced if $\left|\left|Y_{f}\right|-\left|Z_{f}\right|\right| \quad k$
A gate v is k-unbalanced if it
computes a k-unbalanced function f

Crucial Observation:

If $f=g h$ and either g or h are k-unbalanced then $\operatorname{Rank}\left(M_{f}\right) \quad 2^{m-k}$ Proof: Either
$\left|y_{g}\right|+\left|Z_{h}\right| \quad m-k$ or

$$
\left|Z_{g}\right|+\left|Y_{h}\right| \quad m-k
$$

Corollary:

$s=$ number of top product gates If every top product gate has a k-unbalanced son then $\operatorname{Rank}\left(M_{f}\right) \quad s 2^{m-k}$

Random Partition:

Partition (at random) $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{2 m}\right\}$ $\left\{y_{1}, \ldots, y_{m}\right\} \quad\left\{z_{1}, \ldots, z_{m}\right\}$ and hope to unbalance all top products
If v depends on m variables then
(w.h.p.) v becomes m^{ε}-unbalanced

Random Partition:

Partition (at random)
$\left\{X_{1}, \ldots, X_{2 m}\right\}$
$\left\{y_{1}, \ldots, y_{m}\right\} \quad\left\{z_{1}, \ldots, z_{m}\right\}$ and hope to unbalance all top products If v depends on m variables then
 (w.h.p.) v becomes m^{ε}-unbalanced

Problem: With probability $\mathrm{m}^{-1 / 2}$, v is completely balanced. If there are > $\mathrm{m}^{1 / 2}$ top products, some of them have balanced sons

A gate that remained balanced is still computed by a multilinear formula. Maybe some of its sons are unbalanced...

Intuition:

Unbalanced gates contribute little to the final rank.
Enough to show that every
 path from a leaf to the root contains an unbalanced gate

Notations:

$\Psi=a$ multilinear formula (fanin 2) $|\Psi|=$ size of Ψ
A path from a leaf to the root is central if the degrees along it increase by factors of at most 2 Ψ is k-weak if every central path contains a k-unbalanced gate

Notations:
$\Psi=$ a multilinear formula (fanin 2)
$|\Psi|=$ size of Ψ
A path from a leaf to the root is
central if the degrees along it increase by factors of at most 2
Ψ is k-weak if every central path
contains a k-unbalanced gate
Lemma 1: If Ψ is k-weak then

$$
\operatorname{Rank}\left(\mathrm{M}_{\Psi}\right) \leq|\Psi| \cdot 2^{\mathrm{m}-(\mathrm{k} / 2)}
$$

Lemma 2:

Assume $\quad|\Psi|<\mathrm{m}^{(\log \mathrm{m}) / 100}$
Partition (at random) $\left\{X_{1}, \ldots, X_{2 m}\right\}$

$$
\left\{y_{1}, \ldots, y_{m}\right\} \quad\left\{z_{1}, \ldots, z_{m}\right\} . \text { Then }
$$

(w.h.p.): Ψ is k-weak for $k=m^{\varepsilon}$

Intuition:
A central path contains $\Omega(\log m)$ gates.
A gate is not k-unbalanced with prob $\mathrm{m}^{-\delta}$ Hence, a central path does not contain a k-unbalanced gate with prob $<\mathrm{m}^{-\Omega(\log m)}$

Lemma 1: If Ψ is k-weak then
$\operatorname{Rank}\left(\mathrm{M}_{\Psi}\right) \leq|\Psi| \cdot 2^{\mathrm{m}-(\mathrm{k} / 2)}$
Lemma 2: Assume $|\Psi|<\mathrm{m}^{(\log \mathrm{m}) / 100}$. Partition $\left\{X_{1}, \ldots, X_{2 m}\right\} \quad\left\{y_{1}, \ldots, y_{m}\right\} \quad\left\{z_{1}, \ldots, z_{m}\right\}$ then (w.h.p.) Ψ is m^{ε}-weak

Corollary: If for every partition $\operatorname{Rank}\left(M_{f}\right) \quad 2^{m}$ then any multilinear formula Ψ for f is of size $m^{\Omega(\log m)}$

Is this true for Determinant or Permanent?

Not even close...
Determinant and Permanent have n^{2} inputs. Rank $\left(M_{f}\right)$ is at most $2^{n} \ldots$ (for any partition)

Determinant and Permanent:
We will map $\left\{X_{i, j}\right\}$
$\left\{y_{1}, \ldots, y_{m}\right\} \quad\left\{z_{1}, \ldots, z_{m}\right\} \quad\{0,1\}$

$\longrightarrow\left\{y_{1}, \ldots, y_{m}\right\}$
$\left\{z_{1}, \ldots, z_{m}\right\}$ $\{0,1\}$
$\left(m=n^{\varepsilon}\right)$

Step 1: Choose m submatrices of size 22 (with different rows and columns).

				y_{1}	z_{1}				
				1	1				
y_{2}	1								
z_{2}	1								
						y_{3}	z_{3}		
						1	1		

y_{i}	z_{i}
1	1

Step 2: Map submatrix i to either
y_{i}, z_{i}
1
1
1
or

y_{i}	1
z_{i}	1

				y_{1}	z_{1}				
				1	1				
y_{2}	1								
z_{2}	1								
						y_{3}	z_{3}		
						1	1		

Step 3: Choose a perfect matching of all other rows and columns.

				y_{1}	z_{1}				
				1	1				
y_{2}	1								
z_{2}	1								
								1	
		1							
						y_{3}	z_{3}		
						1	1		
			1						
									1

Step 4: Map the perfect matching to 1 and all other entries to 0.

Lemma:

Assume $\quad|\Psi|<\mathbf{n}^{(\log \mathrm{n}) / 100}$ Map (as above) $\left\{X_{i, j}\right\}$
$\left\{y_{1}, \ldots, y_{m}\right\} \quad\left\{z_{1}, \ldots, z_{m}\right\} \quad\{0,1\}$. Then (w.h.p.): Ψ is k-weak for $k=n^{\varepsilon}$

Corollary: After the mapping, $\operatorname{Rank}\left(M_{\Psi}\right)<2^{m}$ (w.h.p.)

But Ψ computes the permanent of:

			y_{1}	z_{1}				
y_{2}				1	1	1		
z_{2}	1							
z_{2}	1							
							1	
	1							
	1			y_{3}	z_{3}			
					1	1		
			1					

$=$ the permanent of:

y_{1}	z_{1}								
1	1								
		y_{2}	1						
		z_{2}	1						
				y_{3}	z_{3}				
				1	1				
						1			
							1		
								1	
									1

$$
=\prod_{i=1}^{m}\left(y_{i}+z_{i}\right)
$$

Thus:

$\operatorname{Rank}\left(M_{\Psi}\right)=2^{m}$
(contradiction...)
The proof for the determinant is the same, except that we get the polynomial

$$
\prod_{i=1}^{m}\left(y_{i}-z_{i}\right)
$$

Additional Research:

[R] Exponential lower bounds for constant depth multilinear formulas
[Aar] Applications to quantum circuits Open:

1) Lower bounds for multilinear proof systems
2) Separation of multilinear and nonmultilinear formula size
3) Polynomial Identity Testing for multilinear formulas

