The bounded round quantum communication complexity of set disjointness

Speaker: Jaikumar Radhakrishnan, Tata Institute, Mumbai

Joint work with
Rahul Jain, Cadence, New Delhi
Pranab Sen, University of Waterloo

Set disjointness

$$
\begin{array}{cc}
A & B \\
X_{A} \subseteq[n] & X_{B} \subseteq[n]
\end{array}
$$

B needs to determine if $X_{A} \cap X_{B} \stackrel{?}{=} \emptyset$.

$$
f\left(X_{A}, X_{B}\right) \stackrel{\text { def }}{=} \bigvee_{i=1}^{n}\left(X_{A}[i] \wedge X_{B}[i]\right)
$$

Optimal deterministic protocol: A sends n bits to B.

Quantum protocols (Yao 1993)

Answer should be correct with probability $\geq 2 / 3$.

Goal: Minimise $m_{1}+m_{2}+\ldots+m_{k}$.

Classical randomised protocols

 (error $\leq 1 / 3$)Babai, Frankl and Simon 1986:
$\Omega(\sqrt{n})$
Kalyanasundaram and Schnitger 1992:
$\Omega(n)$
Razborov 1992:
$\Omega(n)$
Bar-Yossef, Jayram, Kumar and Sivakumar 2002: $\Omega(n)$

Question: Do quantum protocols fare better?

Quantum protocols

(error $\leq 1 / 3$)
Buhrman, Cleve and Wigderson 1998:
Hoyer and de Wolf 2002:
$O(\sqrt{n} \log n)$
$\sqrt{n} 2^{O\left(\log ^{*} n\right)}$
Klauck, Nayak, Ta-Shma and Zuckerman 2001: $\Omega\left(n^{1 / k}\right)$
Razborov 2003:
$\Omega(\sqrt{n})$
Aaronson and Ambainis 2003:
$O(\sqrt{n})$

In this talk

Q. Is there a 3-round optimal quantum protocol?
Q. How well can one do with k-round quantum protocols?

k-round quantum protocols

> Aaronson and Ambainis 2003
> \Downarrow
> $O\left(\frac{n}{k} \log \frac{n}{k^{2}}\right)$-qubit k-round protocol.

Today

In any k-round quantum protocol for set disjointness, A and B must exchange $\Omega\left(n / k^{2}\right)$ qubits.

Plan of the talk

Review of Bar-Yossef et al. (2002)
Part 1: Reduction to AND (information-theoretic)
Part 2: Lower bound for AND

The quantum proof.
Part 1: Reduction to AND (almost the same as before)
Part 2: Lower bound for AND using round elimination.

From disjointness . . . to AND

An m-qubit k-round protocol for disjointness.
\Downarrow

An m-qubit k-round protocol for AND of two bits where neither party reveals more than $\frac{m}{n}$ bits of information about his input when the other party has input 0.

Distributions on inputs

For $j=1,2, \ldots, n$, one party gets 0 and the other party a random bit:

$$
\begin{aligned}
& X_{A}[j]=0 \text { and } X_{B}[j] \text { is random } \\
& \text { or } \\
& X_{B}[j]=0 \text { and } X_{A}[j] \text { is random }
\end{aligned}
$$

There are 2^{n} such distributions. The sets X_{A} and X_{B} are always disjoint, so the answer is 0 .

Information theory . . .

For each such distribution consider the mutual information between the input and the transcript $\stackrel{\text { def }}{=}$ concatenation of all the messages).

$$
\begin{aligned}
I\left[X_{A}: \text { transcript }\right] & \leq \mid \text { transcript } \mid \leq m \\
I\left[X_{B}: \text { transcript }\right] & \leq \mid \text { transcript } \mid \leq m
\end{aligned}
$$

$X_{A}[j]$ are independent:

$$
\sum_{j=1}^{n} I\left[X_{A}[j]: \text { transcript }\right] \leq I\left[X_{A}: \text { transcript }\right] \leq m
$$

The protocol has a weak coordinate j

If $X_{B}[j]=0$ and $X_{A}[j]$ is random $I\left[X_{A}[j]:\right.$ transcript $] \leq \frac{m}{n}$.
If $X_{A}[j]=0$ and $X_{B}[j]$ is random $I\left[X_{B}[j]:\right.$ transcript $] \leq \frac{m}{n}$.
The protocol is neglecting the j th coordinate!

Lemma 1

There is an m-bit protocol for disjointness

$$
\Downarrow
$$

There is an m-bit protocol for computing the AND of two bits a and b where

- if $a=0$ and b is random, then

$$
I[b: \text { transcript }] \leq \frac{m}{n}
$$

- if $b=0$ and a is random, then

$$
I[a: \text { transcript }] \leq \frac{m}{n}
$$

Lemma 2

There is a constant $c>0$ such that in any protocol for AND

$$
I[a: \text { transcript } \mid b=0] \geq c \quad \text { or } I[b: \text { transcript } \mid a=0] \geq c .
$$

A quantum analogue of the argument?

How does one define information between inputs and the transcript in quantum protocols?

From disjointness to AND ...

$$
2 m \geq I\left[X_{A}: \rho_{i}^{B}\right] \geq \sum_{j=1}^{n} I\left[X_{A}[j]: \rho_{i}^{B}\right] .
$$

(Using Cleve et al. 1998.)

Lemma 1: There is a quantum protocol for AND where neither party leaks more than $\frac{m}{n}$ bits of information about his input when the other party has input 0 .

The protocol for AND

$$
\begin{gathered}
I_{1} \stackrel{\text { def }}{=} I\left[a: \rho_{1}^{B} \mid b=0\right] \\
I_{2} \stackrel{\text { def }}{=} I\left[b: \rho_{2}^{A} \mid a=0\right] \\
\vdots \\
I_{k} \stackrel{\text { def }}{=} I\left[a: \rho_{k}^{B} \mid b=0\right] .
\end{gathered}
$$

We have ensured that $I_{1}, I_{2}, \ldots, I_{k} \leq \frac{m}{n} \xlongequal{\text { def }} \epsilon$.

Local transition

Information about a in ρ_{i}^{B} less than ϵ
\Downarrow

$$
\exists C_{i}:\left\|\left(\rho_{i}\right)_{1}-\left(\tilde{\rho}_{i}\right)_{1}\right\|_{t} \leq \sqrt{\epsilon} .
$$

Eliminating rounds 1 and 2

Eliminating round i

The final protocol for AND

Prob. of error $\leq \frac{1}{3}+k \sqrt{\epsilon}$.

A's messages do not depend on a !

Set $b=1$; so, the AND of a and b is a. But B cannot predict a with probability better than $\frac{1}{2}$.

$$
k \cdot \sqrt{\epsilon} \geq \text { const. } \Rightarrow k \cdot \sqrt{\frac{m}{n}} \geq \text { const. }
$$

Thus, $m=\Omega\left(\frac{n}{k^{2}}\right)$.

Summary

Step 1: From an m-qubit k-round protocol for disjointness, derive a protocol for AND where the party with input 0 gets very little information about the input of the other party.

Tool: $I[X: \rho] \geq \sum_{j} I[X[j]: \rho]$. (Mimics Bar-Yossef et al.)

Step 2: Any such protocol for AND must leak $\Omega\left(\frac{1}{k^{2}}\right)$ bits of information per round.

Tools: Round elimination, fidelity, local transition. (Inspired by Klauck et al.)

Finally ...

In any k-round quantum protocol for set disjointness, the two parties must exchange $\Omega\left(\frac{n}{k^{2}}\right)$ qubits.
Q. What is the right bound? Can we push the lower bound closer to the upper bound $O\left(\frac{n}{k} \log \frac{n}{k^{2}}\right)$?
Q. If A sends only r qubits, then how many qubits must B send? Is the answer $\Omega\left(n-r^{2}\right)$ for small r ?

