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• Is privacy amplification secure against an adversary holding

quantum information?

• Christandel’s talk: Implications to quantum cryptography?



Overview

1. Information-theoretic cryptography

2. Characterizing the power of quantum storage

3. Privacy amplification is secure against quantum

adversaries
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Assumptions in cryptographic security proofs

Every security proof is relative to certain assumptions !

• Randomness exists (generation of secret keys)

• Independence exists (6 ∃ telepathy)

• Computational intractability assumptions

• Correct behavior (trustworthiness) of entities

• Physical assumptions

– Tamper-resistance

– Noise in communication systems

– Restrictions on adversary’s memory capacity

– Quantum theory



Why cryptography without comp. assumptions

• Which is the right model of computation?

• No lower bound proofs for any useful comput. model.

• Clean security definitions.

• Physical assumptions are more sound than comp. ass.
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Definition: A cryptosystem is perfect if I(M;C) = 0.

Theorem � � � �� � � : For every perfect cipher, H(K) ≥ H(M).
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Theorem ��� �� � : H(S) ≤ min [ I(X;Y), I(X;Y|Z) ] .

Corollary: H(K) ≥ H(M) holds also in an interactive setting.

Corollary: A public-key cryptosystem cannot be i.-t. secure.

Theorem: In the satellite model, H(S) > 0 is possible whenever

it is not obviously impossible, i.e., if

• Eve’s channel is not perfectly noiseless and

• Alice’s and Bob’s channels have positive capacity.
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d(Z|W) := EW
[

d(PZ|W(·|W))
]

Lemma: One can define a uniform random variable Z that is independent of
W and such that Z = Z holds with probability 1 − d(Z|W).

In other words, with probability 1− d(Z|W) the setting with W and Z is equi-
valent to an ideal setting with W and independent uniform Z.
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Definition: An (X ,Y)-random function G is a random variable taking
as values functions X → Y .

G is called 2-universal if for any distinct x, x′ ∈ X , P
(

G(x) = G(x′)
) ≤ 1

|Y|.

Theorem: Let X and W be arbitrary random variable with H2(X|W) ≥ t and
let G be a 2-universal random function from X to {0,1}s. Then

d(G(X)|WG) ≥ O(2
−1

2(t−s)
).

Corollary: If X is uniform over {0,1}n and W consists of r arbitrary (classi-
cal) bits about X, then

d(G(X)|WG) = O(2
−1

2(n−r−s)
).

Question: What about quantum knowledge about X?
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Basic idea: Eve has bounded storage capacity of s bits, but otherwise
unlimited computing power.
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Question: What about quantum storage?
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Lemma: Consider any random variable Z over Z. If H is a uniform balanced
Boolean random function, then

d(Z) ≤ 3
2

√

|Z| d(H(Z)|H).

More generally,
d(Z|W) ≤ 3

2

√

|Z| d(H(Z)|WH).
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Corollary: Consider any process generating W from a random variable X
and a selection input m. If for any 2-universal (X , {0,1})-random function F
and for any selector with input F we have

d(F(X)|WF) ≤ ε,
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Lemma: If G is 2-universal and H
is a uniform balanced Boolean func-
tion, then F = H ◦ G is a 2-universal
Boolean function.

Corollary: Consider any process generating W from a random variable X
and a selection input m. If for any 2-universal (X , {0,1})-random function F
and for any selector with input F we have

d(F(X)|WF) ≤ ε,

then for any 2-universal (X , {0,1}s)-random function G and for any selector
with input G

d(G(X)|WG) ≤ 3
2 2s/2 ε.



r-qubit quantum storage device
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State: Normalized vector ψ in the d-dimensional Hilbert space Hd (d = 2r).

Equivalently, state space = P(Hd) := {Pψ : ψ ∈ Hd, ‖ψ‖ = 1} (pure states),
where Pψ is the projection operator in Hd along the vector ψ.

Most general read-out operation: m ∈ POVM(Hd), resulting in W.

m is specified by a family {Ew} of nonneg. op. on Hd with
∑

w
Ew = idHd

.

System in state Pψ ⇒ PW(w) = tr(EwPψ).
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The quantum binary decision problem

Given: A QS prepared in one of two mixed states ρ0, ρ1 ∈ S(H),
with a priori probabilities q and 1 − q, respectively.

QBDP: Decide which of the two is the case.

General decision strategy: POVM {E0, E1}

Prob[W = i|ρ = ρj] = tr(Eiρj), for i, j ∈ {0,1}.

Success probability: q tr(E0ρ0) + (1 − q) tr(E1ρ1) .

Theorem ��� �� �� � : The maximum achievable success probability is
1
2 + 1

2

∑d
j=1 |µj| ,

where {µj}dj=1 are the eigenvalues of the hermitian operator

Γ := q ρ0 − (1 − q) ρ1.
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Lemma: Let

X = random variable with range X , stored in an r-qubit quantum
system using storage function ϕ : x 7→ Pψx.

F = any Boolean random function on X .

W = measurement outcome of any measurement on the state,
depending on F.

Then d(F(X)|WF) ≤ 1
2 EF

[ d∑

j=1

|µF
j |
]

,

where for every f , {µfj }dj=1 are the eigenvalues of the hermitian operator

Λf :=
∑

x:f(x)=0

PX(x)Pψx −
∑

x:f(x)=1

PX(x)Pψx
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Note: For 2-universal F, λx,x′ ≤ 0 for x 6= x′.
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λx,x′ := 2Prob[F(x) = F(x′)] − 1 = EF[δf(x),f(x′) − 1]

Note: For 2-universal F, λx,x′ ≤ 0 for x 6= x′.

Theorem: Let X, F, and W be as above. Then

d(F(X)|WF) ≤ 1
2d

1
2
√ ∑

x,x′∈X
PX(x)PX(x′)λx,x′ tr(PψxPψx′)

Corollary: If F is 2-universal, then

d(F(X)|WF) ≤ 1
2d

1
2

√
∑

x∈X
P2

X(x) = 1
2 2

1
2(H2(X)−r)

Moreover, if X is a uniform n-bit string, then

d(F(X)|WF) ≤ 1
2 2

1
2(n−r)



Theorem: Let X, F, and W be as above. Then

d(F(X)|WF) ≤ 1
2d

1
2
√ ∑

x,x′∈X
PX(x)PX(x′)λx,x′ tr(PψxPψx′)

Proof: For any f ,
d∑

j=1

|µfj | ≤ d
1
2

√
√
√
√
√

d∑

j=1

|µfj |
2 = d

1
2

√

tr(Λ2
f) ,

(using Jensen’s inequality and Schur’s (in)equality).

d(F(X)|WF) ≤ 1
2EF

[ d∑

j=1

|µF
j |
]

≤ 1
2 d

1
2 EF

[
√

tr(Λ2
F)
]

≤ 1
2 d

1
2

√

EF[tr(Λ2
F)] .

tr(Λ2
f) =

∑

x,x′∈X
f(x)=f(x′)

PX(x)PX(x′) tr(PψxPψx′) −
∑

x,x′∈X
f(x)6=f(x′)

PX(x)PX(x′) tr(PψxPψx′)

=
∑

x,x′∈X
2(δf(x),f(x′) − 1)
︸ ︷︷ ︸

E[.] = λx,x′

PX(x)PX(x′) tr(PψxPψx′)



Comparing classical and quantum storage devices

Lemma: For a uniform 2-bit random variable X, a uniform Boolean balanced
random function F, and a 1-(qu)bit storage system,
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Lemma: For a uniform 2-bit random variable X, a uniform Boolean balanced
random function F, and a 1-(qu)bit storage system,

d� � ��� (F(X)|WF) = 1
4

and

d� � � �

(F(X)|WF) =
1

2
√

3
≈ 0.289 .

Lemma: For any random variable X and any uniform random function F,

1√
2π

(1+O(2−(n−r)))2−
n−r
2 ≤ d� � � � (F(X)|WF) ≤ d� � � �

(F(X)|WF) ≤ 1
22

−n−r
2 .
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Lemma: If G is 2-universal and H
is a uniform balanced Boolean func-
tion, then F = H ◦ G is a 2-universal
Boolean function.

Corollary: Let X be a random variable over X . If for any 2-universal (X , {0,1})-
random function F and for any process generating W from X and F we have

d(F(X)|WF) ≤ ε,

then for any 2-universal (X , {0,1}s)-random function G and any process
generating a random variable W from X and G we have

d(G(X)|WG) ≤ 3
2 2s/2 ε.



Privacy amplification is secure against quantum adversaries

Theorem: Let X be uniformly distributed over {0,1}n and let G be a 2-
universal random function from {0,1}n to {0,1}s. If all information about
X is stored in r qubits, then

d� � ���

(G(X)|WG) ≤ 3
4 2

−1
2(n−r−s) .

Note:

d� � � � (G(X)|WG) = O

(

2
−1

2(n−r−s)
)
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Conclusions

• In a quite general context quantum memory is only

marginally more powerful than classical memory.

• Is this always true? What about the bounded-storage

model?

• Privacy amplification is secure even against adversaries

with quantum knowledge.

This has applications for security proofs of quantum cryp-

tographic schemes.


