On the Power of Quantum Memory

Ueli Maurer, ETH Zurich

Joint work with Robert König and Renato Renner

paper at: quant-ph/0305154

7th Workshop on Quantum Information Processing (QIP 2004), Waterloo, Jan. 15-19, 2004

Basic questions:

- How to characterize the power of (quantum) memory?

Basic questions:

- How to characterize the power of (quantum) memory?
- Are r quantum bits more powerful than r classical bits?

Basic questions:

- How to characterize the power of (quantum) memory?
- Are r quantum bits more powerful than r classical bits?

Basic questions:

- How to characterize the power of (quantum) memory?
- Are r quantum bits more powerful than r classical bits?

- Is privacy amplification secure against an adversary holding quantum information?

Basic questions:

- How to characterize the power of (quantum) memory?
- Are r quantum bits more powerful than r classical bits?

- Is privacy amplification secure against an adversary holding quantum information?
- Christandel's talk: Implications to quantum cryptography?

Overview

1. Information-theoretic cryptography
2. Characterizing the power of quantum storage
3. Privacy amplification is secure against quantum adversaries

Assumptions in cryptographic security proofs

Assumptions in cryptographic security proofs

Every security proof is relative to certain assumptions !

- Randomness exists (generation of secret keys)
- Independence exists (\nexists telepathy)

Assumptions in cryptographic security proofs

Every security proof is relative to certain assumptions !

- Randomness exists (generation of secret keys)
- Independence exists (\nexists telepathy)
- Computational intractability assumptions

Assumptions in cryptographic security proofs

Every security proof is relative to certain assumptions !

- Randomness exists (generation of secret keys)
- Independence exists (\nexists telepathy)
- Computational intractability assumptions
- Correct behavior (trustworthiness) of entities

Assumptions in cryptographic security proofs

Every security proof is relative to certain assumptions !

- Randomness exists (generation of secret keys)
- Independence exists (\nexists telepathy)
- Computational intractability assumptions
- Correct behavior (trustworthiness) of entities
- Physical assumptions
- Tamper-resistance
- Noise in communication systems
- Restrictions on adversary's memory capacity
- Quantum theory

Why cryptography without comp. assumptions

- Which is the right model of computation?
- No lower bound proofs for any useful comput. model.
- Clean security definitions.
- Physical assumptions are more sound than comp. ass.

Symmetric cryptosystem

Symmetric cryptosystem

Definition: A cryptosystem is perfect if $I(M ; C)=0$.

Symmetric cryptosystem

Definition: A cryptosystem is perfect if $I(M ; C)=0$.
Theorem [Sha49]: For every perfect cipher, $H(K) \geq \mathbf{H}(M)$.

Information-theoretic key agreement by public discussion [M93]

Eve

$$
C^{t}-\cdots ?
$$

Theorem [M93]: $\quad \mathrm{H}(\mathrm{S}) \leq \min [\mathrm{I}(\mathrm{X} ; \mathrm{Y}), \mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})]$.

Theorem [M93]: $\quad \mathrm{H}(\mathrm{S}) \leq \min [\mathrm{I}(\mathrm{X} ; \mathrm{Y}), \mathrm{l}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})]$.

Corollary: $\mathrm{H}(\mathrm{K}) \geq \mathrm{H}(\mathrm{M})$ holds also in an interactive setting.

Theorem [M93]: $\quad \mathrm{H}(\mathrm{S}) \leq \min [\mathrm{I}(\mathrm{X} ; \mathrm{Y}), \mathrm{l}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})]$.

Corollary: $\mathrm{H}(\mathrm{K}) \geq \mathrm{H}(\mathrm{M})$ holds also in an interactive setting.

Corollary: A public-key cryptosystem cannot be i.-t. secure.

Theorem [M93]: $\quad \mathrm{H}(\mathrm{S}) \leq \min [\mathrm{I}(\mathrm{X} ; \mathrm{Y}), \mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})]$.

Corollary: $\mathrm{H}(\mathrm{K}) \geq \mathrm{H}(\mathrm{M})$ holds also in an interactive setting.

Corollary: A public-key cryptosystem cannot be i.-t. secure.

Theorem: In the satellite model, $\mathrm{H}(\mathrm{S})>0$ is possible whenever it is not obviously impossible, i.e., if

- Eve's channel is not perfectly noiseless and
- Alice's and Bob's channels have positive capacity.

Information-theoretic key agreement by public discussion

Alice's initial string

Distance from uniformity

$$
\mathbf{d}(\mathbf{Z}):=\frac{1}{2} \sum_{z \in \mathcal{Z}}\left|P_{\mathbf{Z}}(z)-\frac{1}{|\mathcal{Z}|}\right| \quad \text { (= sum of red quantities) }
$$

Distance from uniformity

$$
\begin{aligned}
& \mathbf{d}(\mathbf{Z}):=\frac{1}{2} \sum_{z \in \mathcal{Z}}\left|P_{\mathbf{Z}}(z)-\frac{1}{|\mathcal{Z}|}\right| \quad \text { (= sum of red quantities) } \\
& \mathbf{d}(\mathbf{Z} \mid \mathbf{W}):=E_{\mathbf{W}}\left[\mathbf{d}\left(P_{\mathbf{Z} \mid \mathbf{W}}(\cdot \mid \mathbf{W})\right)\right]
\end{aligned}
$$

Distance from uniformity

$$
\begin{aligned}
& \mathbf{d}(\mathbf{Z}):=\frac{1}{2} \sum_{z \in \mathcal{Z}}\left|P_{\mathbf{Z}}(z)-\frac{1}{|\mathcal{Z}|}\right| \quad \text { (= sum of red quantities) } \\
& \mathbf{d}(\mathbf{Z} \mid \mathbf{W}):=E_{\mathbf{W}}\left[\mathbf{d}\left(P_{\mathbf{Z}} \mid \mathbf{W}(\cdot \mid \mathbf{W})\right)\right]
\end{aligned}
$$

Lemma: One can define a uniform random variable Z that is independent of W and such that $\mathrm{Z}=\mathrm{Z}$ holds with probability $1-\mathbf{d}(\mathrm{Z} \mid \mathrm{W})$.

Distance from uniformity

$$
\begin{aligned}
& \mathbf{d}(\mathbf{Z}):=\frac{1}{2} \sum_{z \in \mathcal{Z}}\left|P_{\mathbf{Z}}(z)-\frac{1}{|\mathcal{Z}|}\right| \quad \text { (= sum of red quantities) } \\
& \mathbf{d}(\mathbf{Z} \mid \mathbf{W}):=E_{\mathbf{W}}\left[\mathbf{d}\left(P_{\mathbf{Z}} \mid \mathbf{W}(\cdot \mid \mathbf{W})\right)\right]
\end{aligned}
$$

Lemma: One can define a uniform random variable Z that is independent of W and such that $\mathrm{Z}=\mathrm{Z}$ holds with probability $1-\mathbf{d}(\mathrm{Z} \mid \mathrm{W})$.

In other words, with probability $1-\mathrm{d}(\mathrm{Z} \mid \mathrm{W})$ the setting with W and Z is equivalent to an ideal setting with W and independent uniform Z .

Privacy amplification

Privacy amplification by universal hashing [BBR86,BBCM95]

Definition: An $(\mathcal{X}, \mathcal{Y})$-random function G is a random variable taking as values functions $\mathcal{X} \rightarrow \mathcal{Y}$.

Privacy amplification by universal hashing [BBR86,BBCM95]

Definition: $\mathbf{A n}(\mathcal{X}, \mathcal{Y})$-random function G is a random variable taking as values functions $\mathcal{X} \rightarrow \mathcal{Y}$.

G is called 2-universal if for any distinct $x, x^{\prime} \in \mathcal{X}, \quad P\left(\mathrm{G}(x)=\mathrm{G}\left(x^{\prime}\right)\right) \leq \frac{1}{|\mathcal{Y}|}$.

Privacy amplification by universal hashing [BBR86,BBCM95]

Definition: $\mathbf{A n}(\mathcal{X}, \mathcal{Y})$-random function G is a random variable taking as values functions $\mathcal{X} \rightarrow \mathcal{Y}$.

G is called 2-universal if for any distinct $x, x^{\prime} \in \mathcal{X}, \quad P\left(\mathrm{G}(x)=\mathrm{G}\left(x^{\prime}\right)\right) \leq \frac{1}{|\mathcal{Y}|}$.

Theorem: Let X and \mathbf{W} be arbitrary random variable with $H_{2}(\mathbf{X} \mid \mathbf{W}) \geq t$ and let G be a 2-universal random function from \mathcal{X} to $\{0,1\}^{s}$. Then

$$
\mathbf{d}(\mathbf{G}(\mathbf{X}) \mid \mathbf{W G}) \geq O\left(2^{-\frac{1}{2}(t-s)}\right)
$$

Privacy amplification by universal hashing [BBR86,BBCM95]

Definition: $\mathbf{A n}(\mathcal{X}, \mathcal{Y})$-random function G is a random variable taking as values functions $\mathcal{X} \rightarrow \mathcal{Y}$.

G is called 2-universal if for any distinct $x, x^{\prime} \in \mathcal{X}, \quad P\left(\mathrm{G}(x)=\mathrm{G}\left(x^{\prime}\right)\right) \leq \frac{1}{|\mathcal{Y}|}$.

Theorem: Let X and \mathbf{W} be arbitrary random variable with $H_{2}(\mathbf{X} \mid \mathbf{W}) \geq t$ and let G be a 2-universal random function from \mathcal{X} to $\{0,1\}^{s}$. Then

$$
\mathbf{d}(\mathbf{G}(\mathbf{X}) \mid \mathbf{W G}) \geq O\left(2^{-\frac{1}{2}(t-s)}\right)
$$

Corollary: If \mathbf{X} is uniform over $\{0,1\}^{n}$ and W consists of r arbitrary (classical) bits about X, then

$$
\mathbf{d}(\mathrm{G}(\mathbf{X}) \mid \mathrm{WG})=O\left(2^{-\frac{1}{2}(n-r-s)}\right)
$$

Privacy amplification by universal hashing [BBR86,BBCM95]

Definition: $\mathbf{A n}(\mathcal{X}, \mathcal{Y})$-random function G is a random variable taking as values functions $\mathcal{X} \rightarrow \mathcal{Y}$.

G is called 2-universal if for any distinct $x, x^{\prime} \in \mathcal{X}, \quad P\left(\mathrm{G}(x)=\mathrm{G}\left(x^{\prime}\right)\right) \leq \frac{1}{|\mathcal{Y}|}$.

Theorem: Let X and \mathbf{W} be arbitrary random variable with $H_{2}(\mathrm{X} \mid \mathbf{W}) \geq t$ and let G be a 2-universal random function from \mathcal{X} to $\{0,1\}^{s}$. Then

$$
\mathbf{d}(\mathbf{G}(\mathbf{X}) \mid \mathbf{W G}) \geq O\left(2^{-\frac{1}{2}(t-s)}\right)
$$

Corollary: If \mathbf{X} is uniform over $\{0,1\}^{n}$ and W consists of r arbitrary (classical) bits about X, then

$$
\mathbf{d}(\mathbf{G}(\mathbf{X}) \mid \mathbf{W G})=O\left(2^{-\frac{1}{2}(n-r-s)}\right)
$$

Question: What about quantum knowledge about X ?

The bounded-storage model (BSM) [M90]

> Basic idea: Eve has bounded storage capacity of s bits, but otherwise unlimited computing power.

The bounded-storage model (BSM) [M90]

Basic idea: Eve has bounded storage capacity of s bits, but otherwise unlimited computing power.

Alice Bob

Eve

The bounded-storage model (BSM) [M90]
Basic idea: Eve has bounded storage capacity of s bits, but otherwise unlimited computing power.

Question: What about quantum storage?

Lemma: Consider any random variable Z over \mathcal{Z}. If H is a uniform balanced Boolean random function, then

$$
\mathbf{d}(Z) \leq \frac{3}{2} \sqrt{|\mathcal{Z}|} \mathbf{d}(H(Z) \mid H) .
$$

Lemma: Consider any random variable Z over \mathcal{Z}. If H is a uniform balanced Boolean random function, then

$$
\mathbf{d}(Z) \leq \frac{3}{2} \sqrt{|\mathcal{Z}|} \mathbf{d}(H(Z) \mid H) .
$$

More generally,

$$
\mathbf{d}(Z \mid W) \leq \frac{3}{2} \sqrt{|\mathcal{Z}|} \mathbf{d}(H(Z) \mid W H)
$$

Lemma: If G is 2-universal and H is a uniform balanced Boolean function, then $F=H \circ G$ is a 2-universal Boolean function.

Lemma: If G is 2-universal and H is a uniform balanced Boolean function, then $F=H \circ G$ is a 2-universal Boolean function.

Corollary: Consider any process generating W from a random variable X and a selection input m . If for any 2-universal ($\mathcal{X},\{0,1\}$)-random function F and for any selector with input F we have

$$
\mathbf{d}(\mathrm{F}(\mathrm{X}) \mid \mathrm{WF}) \leq \epsilon,
$$

Lemma: If G is 2-universal and H is a uniform balanced Boolean function, then $F=H \circ G$ is a 2-universal Boolean function.

Corollary: Consider any process generating W from a random variable X and a selection input m. If for any 2-universal ($\mathcal{X},\{0,1\}$)-random function F and for any selector with input F we have

$$
\mathbf{d}(\mathrm{F}(\mathrm{X}) \mid \mathrm{WF}) \leq \epsilon,
$$

then for any 2-universal $\left(\mathcal{X},\{0,1\}^{s}\right)$-random function G and for any selector with input G

$$
\mathbf{d}(\mathbf{G}(\mathbf{X}) \mid \mathrm{WG}) \leq \frac{3}{2} 2^{s / 2} \epsilon .
$$

r-qubit quantum storage device

State: Normalized vector ψ in the d-dimensional Hilbert space $\mathcal{H}_{d}\left(d=2^{r}\right)$.
Equivalently, state space $=\mathcal{P}\left(\mathcal{H}_{d}\right):=\left\{P_{\psi}: \psi \in \mathcal{H}_{d},\|\psi\|=1\right\}$ (pure states), where P_{ψ} is the projection operator in \mathcal{H}_{d} along the vector ψ.

Most general read-out operation: $\mathbf{m} \in \operatorname{POVM}\left(\mathcal{H}_{d}\right)$, resulting in \mathbf{W}. \mathbf{m} is specified by a family $\left\{E_{w}\right\}$ of nonneg. op. on \mathcal{H}_{d} with $\sum_{w} E_{w}=\mathbf{i d}_{\mathcal{H}_{d}}$.

System in state $P_{\psi} \Rightarrow P_{\mathbf{W}}(w)=\operatorname{tr}\left(E_{w} P_{\psi}\right)$.

The quantum binary decision problem

Given: A QS prepared in one of two mixed states $\rho_{0}, \rho_{1} \in \mathcal{S}(\mathcal{H})$, with a priori probabilities q and $1-q$, respectively.

QBDP: Decide which of the two is the case.

The quantum binary decision problem

Given: A QS prepared in one of two mixed states $\rho_{0}, \rho_{1} \in \mathcal{S}(\mathcal{H})$, with a priori probabilities q and $1-q$, respectively.

QBDP: Decide which of the two is the case.

General decision strategy: $\operatorname{POVM}\left\{E_{0}, E_{1}\right\}$

$$
\operatorname{Prob}\left[\mathrm{W}=i \mid \rho=\rho_{j}\right]=\operatorname{tr}\left(E_{i} \rho_{j}\right), \quad \text { for } i, j \in\{0,1\} .
$$

Success probability: $q \operatorname{tr}\left(E_{0} \rho_{0}\right)+(1-q) \operatorname{tr}\left(E_{1} \rho_{1}\right)$.

The quantum binary decision problem

Given: A QS prepared in one of two mixed states $\rho_{0}, \rho_{1} \in \mathcal{S}(\mathcal{H})$, with a priori probabilities q and $1-q$, respectively.

QBDP: Decide which of the two is the case.

General decision strategy: POVM $\left\{E_{0}, E_{1}\right\}$

$$
\operatorname{Prob}\left[\mathbf{W}=i \mid \rho=\rho_{j}\right]=\operatorname{tr}\left(E_{i} \rho_{j}\right), \quad \text { for } i, j \in\{0,1\}
$$

Success probability: $q \operatorname{tr}\left(E_{0} \rho_{0}\right)+(1-q) \operatorname{tr}\left(E_{1} \rho_{1}\right)$.

Theorem [Hel76]: The maximum achievable success probability is

$$
\frac{1}{2}+\frac{1}{2} \sum_{j=1}^{d}\left|\mu_{j}\right|
$$

where $\left\{\mu_{j}\right\}_{j=1}^{d}$ are the eigenvalues of the hermitian operator

$$
\Gamma:=q \rho_{0}-(1-q) \rho_{1}
$$

Lemma: Let
$X=$ random variable with range \mathcal{X}, stored in an r-qubit quantum system using storage function $\varphi: x \mapsto P_{\psi_{x}}$.
$\mathrm{F}=$ any Boolean random function on \mathcal{X}.
$\mathrm{W}=$ measurement outcome of any measurement on the state, depending on F.

Then

$$
\mathbf{d}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F}) \leq \frac{1}{2} E_{\mathbf{F}}\left[\sum_{j=1}^{d}\left|\mu_{j} \mathbf{F}^{\prime}\right|\right],
$$

where for every $f,\left\{\mu_{j}^{f}\right\}_{j=1}^{d}$ are the eigenvalues of the hermitian operator

$$
\wedge_{f}:=\sum_{x: f(x)=0} P_{\mathbf{X}}(x) P_{\psi_{x}}-\sum_{x: f(x)=1} P_{\mathbf{X}}(x) P_{\psi_{x}}
$$

Let

$$
\lambda_{x, x^{\prime}}:=2 \operatorname{Prob}\left[\mathbf{F}(x)=\mathbf{F}\left(x^{\prime}\right)\right]-1=E_{\mathbf{F}}\left[\delta_{f(x), f\left(x^{\prime}\right)}-1\right]
$$

Note: For 2-universal F, $\lambda_{x, x^{\prime}} \leq 0$ for $x \neq x^{\prime}$.

Let

$$
\lambda_{x, x^{\prime}}:=2 \operatorname{Prob}\left[\mathbf{F}(x)=\mathbf{F}\left(x^{\prime}\right)\right]-1=E_{\mathbf{F}}\left[\delta_{f(x), f\left(x^{\prime}\right)}-1\right]
$$

Note: For 2-universal F, $\lambda_{x, x^{\prime}} \leq 0$ for $x \neq x^{\prime}$.

Theorem: Let X, F, and W be as above. Then

$$
\mathbf{d}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F}) \leq \frac{1}{2} d \frac{1}{2} \sqrt{\sum_{x, x^{\prime} \in \mathcal{X}} P_{\mathbf{X}}(x) P_{\mathbf{X}}\left(x^{\prime}\right) \lambda_{x, x^{\prime}} \operatorname{tr}\left(P_{\psi_{x}} P_{\psi_{x^{\prime}}}\right)}
$$

Let

$$
\lambda_{x, x^{\prime}}:=2 \operatorname{Prob}\left[\mathbf{F}(x)=\mathbf{F}\left(x^{\prime}\right)\right]-1=E_{\mathbf{F}}\left[\delta_{f(x), f\left(x^{\prime}\right)}-1\right]
$$

Note: For 2-universal F, $\lambda_{x, x^{\prime}} \leq 0$ for $x \neq x^{\prime}$.

Theorem: Let X, F, and W be as above. Then

$$
\mathbf{d}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F}) \leq \frac{1}{2} d \frac{1}{2} \sqrt{\sum_{x, x^{\prime} \in \mathcal{X}} P_{\mathbf{X}}(x) P_{\mathbf{X}}\left(x^{\prime}\right) \lambda_{x, x^{\prime}} \operatorname{tr}\left(P_{\psi_{x}} P_{\psi_{x^{\prime}}}\right)}
$$

Corollary: If F is 2-universal, then

$$
\mathbf{d}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F}) \leq \frac{1}{2} d^{\frac{1}{2}} \sqrt{\sum_{x \in \mathcal{X}} P_{\mathbf{X}}^{2}(x)}=\frac{1}{2} 2^{\frac{1}{2}\left(H_{2}(\mathbf{X})-r\right)}
$$

Moreover, if \mathbf{X} is a uniform n-bit string, then

$$
\mathbf{d}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F}) \leq \frac{1}{2} 2^{\frac{1}{2}(n-r)}
$$

Theorem: Let X, F, and W be as above. Then

$$
\mathbf{d}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W} \mathbf{F}) \leq \frac{1}{2} d^{\frac{1}{2}} \sqrt{\sum_{x, x^{\prime} \in \mathcal{X}} P_{\mathbf{X}}(x) P_{\mathbf{X}}\left(x^{\prime}\right) \lambda_{x, x^{\prime}} \operatorname{tr}\left(P_{\psi_{x}} P_{\psi_{x^{\prime}}}\right)}
$$

Proof: For any f,

$$
\sum_{j=1}^{d}\left|\mu_{j}^{f}\right| \leq d^{\frac{1}{2}} \sqrt{\sum_{j=1}^{d}\left|\mu_{j}^{f}\right|^{2}}=d^{\frac{1}{2}} \sqrt{\operatorname{tr}\left(\wedge_{f}^{2}\right)}
$$

(using Jensen's inequality and Schur's (in)equality).

$$
\begin{aligned}
& \mathbf{d}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F}) \leq \frac{1}{2} E_{\mathbf{F}}\left[\sum_{j=1}^{d}\left|\mu_{j}^{\mathbf{F}}\right|\right] \leq \frac{1}{2} d^{\frac{1}{2}} E_{\mathbf{F}}\left[\sqrt{\operatorname{tr}\left(\Lambda_{\mathbf{F}}^{2}\right)}\right] \leq \frac{1}{2} d^{\frac{1}{2}} \sqrt{E_{\mathbf{F}}\left[\operatorname{tr}\left(\Lambda_{\mathbf{F}}^{2}\right)\right]} \\
& \begin{aligned}
\operatorname{tr}\left(\Lambda_{f}^{2}\right) & =\sum_{\substack{x, x^{\prime} \in \mathcal{X} \\
f(x)=f\left(x^{\prime}\right)}} P_{X}(x) P_{X}\left(x^{\prime}\right) \operatorname{tr}\left(P_{\psi_{x}} P_{\psi_{x^{\prime}}}\right)-\sum_{\substack{x, x^{\prime} \in \mathcal{X} \\
f(x) \neq f\left(x^{\prime}\right)}} P_{X}(x) P_{X}\left(x^{\prime}\right) \operatorname{tr}\left(P_{\psi_{x}} P_{\psi_{x^{\prime}}}\right) \\
& =\sum_{x, x^{\prime} \in \mathcal{X}} \underbrace{2\left(\delta_{\left.f(x), f\left(x^{\prime}\right)-1\right)}\right.}_{E[\cdot]=\lambda_{x, x^{\prime}}} P_{\mathbf{X}}(x) P_{\mathbf{X}}\left(x^{\prime}\right) \operatorname{tr}\left(P_{\psi_{x}} P_{\psi_{x^{\prime}}}\right)
\end{aligned}
\end{aligned}
$$

Comparing classical and quantum storage devices

Lemma: For a uniform 2-bit random variable X, a uniform Boolean balanced random function F, and a 1-(qu)bit storage system,

$$
d_{\mathrm{Opt}}^{\mathrm{C}}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F})=\frac{1}{4}
$$

and

$$
d_{\mathrm{opt}}^{\mathrm{q}}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F})=\frac{1}{2 \sqrt{3}} \approx 0.289 .
$$

Comparing classical and quantum storage devices

Lemma: For a uniform 2-bit random variable X, a uniform Boolean balanced random function F, and a 1-(qu)bit storage system,

$$
d_{\mathrm{Opt}}^{\mathrm{C}}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F})=\frac{1}{4}
$$

and

$$
d_{\mathrm{Opt}}^{\mathrm{q}}(\mathbf{F}(\mathbf{X}) \mid \mathrm{WF})=\frac{1}{2 \sqrt{3}} \approx 0.289
$$

Lemma: For any random variable X and any uniform random function F,

$$
\frac{1}{\sqrt{2 \pi}}\left(1+O\left(2^{-(n-r)}\right)\right) 2^{-\frac{n-r}{2}} \leq d_{\mathrm{Opt}}^{\mathrm{C}}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F}) \leq d_{\mathrm{opt}}^{\mathrm{q}}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F}) \leq \frac{1}{2} 2^{-\frac{n-r}{2}} .
$$

Lemma: If G is 2-universal and H is a uniform balanced Boolean function, then $F=H \circ G$ is a 2-universal Boolean function.

Corollary: Let \boldsymbol{X} be a random variable over \mathcal{X}. If for any 2-universal $(\mathcal{X},\{0,1\})$ random function F and for any process generating W from X and F we have

$$
\mathbf{d}(\mathbf{F}(\mathbf{X}) \mid \mathbf{W F}) \leq \epsilon,
$$

then for any 2-universal $\left(\mathcal{X},\{0,1\}^{s}\right)$-random function G and any process generating a random variable W from X and G we have

$$
\mathbf{d}(\mathbf{G}(\mathbf{X}) \mid \mathbf{W G}) \leq \frac{3}{2} 2^{s / 2} \epsilon
$$

Privacy amplification is secure against quantum adversaries

Theorem: Let X be uniformly distributed over $\{0,1\}^{n}$ and let G be a 2universal random function from $\{0,1\}^{n}$ to $\{0,1\}^{s}$. If all information about X is stored in r qubits, then

$$
d_{\mathrm{Opt}}^{\mathrm{q}}(\mathbf{G}(\mathbf{X}) \mid \mathbf{W G}) \leq \frac{3}{4} 2^{-\frac{1}{2}(n-r-s)} .
$$

Note:

$$
d_{\mathrm{Opt}}^{\mathrm{C}}(\mathrm{G}(\mathrm{X}) \mid \mathrm{WG})=O\left(2^{-\frac{1}{2}(n-r-s)}\right)
$$

Conclusions

- In a quite general context quantum memory is only marginally more powerful than classical memory.

Conclusions

- In a quite general context quantum memory is only marginally more powerful than classical memory.
- Is this always true? What about the bounded-storage model?

Conclusions

- In a quite general context quantum memory is only marginally more powerful than classical memory.
- Is this always true? What about the bounded-storage model?
- Privacy amplification is secure even against adversaries with quantum knowledge.

This has applications for security proofs of quantum cryptographic schemes.

