

Quantum Algorithms for the Triangle Problem

Frédéric Magniez

http://www.lri.fr/~magniez

joint work with

Miklos Santha Mario Szegedy

CNRS-LRI (Université Paris-Sud)

Rutgers University

Oracle Input

- A (non-oriented) graph G on n vertices given as a black-box

Output

- A triangle, if there is any
- Reject, otherwise

Query model

- Query: $(i,j)\in [n]^2$
- Answer: 1 if $(i,j) \in G$, 0 otherwise
- Complexity: number of queries (QQC)

Oracle Adjacency function

1:2:3:4:							
1: 2: 3:	0		1				
2:	1	0	1	0			
3:	1	1	0	1			
4:	0	0	1	0			

Generalities

- Deterministically: $\Theta(n^2)$
- **Randomly**: Conjecture: $\Theta(n^2)$
- Conjecture: $\Omega(n)$

 $\Omega(n^{4/3}\log^{1/3}n)$ [Hajnal'91; Chakrabarti, Khot'01] - Quantumly: $\Omega(n^{2/3}\log^{1/6} n)$ [Yao'01]

[Rivest, Vuillemin'76]

Observations on QQC

- Any complexity in $[n, n^2]$ is possible
- Most of *natural* properties have complexity in $\{n, n^{3/2}, n^2\}$

Examples

- Having an edge, a star: $\Theta(n)$
- Connectivity, ...: $\tilde{\Theta}(n^{3/2})$
- Majority: $\Theta(n^2)$

[Dürr, Heiligman, Høyer, Mhalla'04]

Multiplication

- Checking $A \times B \stackrel{?}{=} C$

Randomly (time & query): $\Theta(n^2)$ Quantumly: $[\Omega(n^{3/2}), O(n^{5/3})]$ [Ambainis, Buhrman, Høyer,

Karpinski, Kurar, Midrijanis'02]

- Computing $A \times B = ?$

Random & Quantum time : $O(n^{2.38})$

Relation to Triangle

Randomly

Query: $\Theta(n^2)$ Time: $O(n^{2.38})$ from a reduction to Matrix Multiplication

Quantumly, the situation is different:

 $QQC(Triangle) = o(n^{3/2})$ [Next slide...]

Previous results

Randomly

Tight bound: $\Theta(n^2)$

Quantumly

This Talk

- Using $O(\log n)$ qubits: $ilde{O}(n^{10/7}) = O(n^{1.43})$
- Using O(n) qubits: $O(n^{1.3})$

Main tool: Grover search

- Oracle Input: $f:[n]
 ightarrow \{0,1\}$
- Output: x such that f(x) = 1
- **QQC** = $\Theta(\sqrt{n})$

Triangle between candidates

- Additional input: a set of triangles $T \subseteq [n]^3$
- Output: A triangle of G among those of T, if there is any
- QQC = $O(\sqrt{|T|})$

Triangle with a golden edge

- Additional input: a set of edges $E \subseteq [n]^2$
- Output: A triangle of G containing an edge of E
- QQC = $O(\sqrt{|E|} + \sqrt{n|E \cap G|})$ by a generalization of [BDHHMSW'01]

Naive algorithm

- I. While $\exists v: d_G(v) \geq n^{1-\delta}$
 - a. Compute $u_G(v)$
 - b. If $G \cap \nu_G(v)^2
 eq \emptyset$, output the triangle induced by v
 - c. Otherwise disconnect v from G
- 2. Do [BDHHMSW'01] Algorithm

Query complexity

- I. Search: \sqrt{n} , degree checking: $n^{\delta/2} \longrightarrow n^{(1+\delta)/2}$
 - a. Computation: *n*
 - b. Intersection: $\sqrt{|
 u_G(v)|^2} \leq n$

Number of iterations: W

2. Standard algorithm: $n^{(3-\delta)/2}$

 $\begin{array}{lll} \text{Total:} & T = W \times n + n^{(3-\delta)/2} \\ \text{Lucky:} & W \leq n^2/(n^{1-\delta})^2 \leq n^{2\delta} \implies T \leq n^{1.4} & \text{when } \delta = 1/5 \\ \text{Unlucky:} & W \leq n \implies T \leq n^2 & \text{when } \delta = 0 \end{array}$

Preparation

I. Let $k = \Theta(n^{3/7}) imes \log n$

- 2. Randomly choose $v_1, v_2, \ldots, v_k \in [n]$
- 3. Compute every neighborhood $u_G(v_i)$

Quantum 4. If $G \cap (\nu_G(v_i))^2
eq \emptyset$, then output the triangle induced by v_i

5. Otherwise $G \subseteq G' = [n]^2 \setminus \cup (\nu_G(v_i))^2$

Query complexity: $k \times n + k \times O(\sqrt{n^2}) = O(n^{10/7})$

Definition

$$oldsymbol{G}^{\langle t
angle ext{def}} \equiv \{(a,b): |\{v:(a,v),(v,b)\in G\}|\leq t\}$$

Main lemma

 $G'\subseteq G^{\langle n^{4/7}
angle}$ (with high probability)

Proof

$$egin{aligned} (a,b)
ot\in G^{\langle n^{4/7}
angle} &\Longrightarrow & \Pr_v[a,b\in
u_G(v)] > rac{n^{4/7}}{n} = rac{1}{n^{3/7}} \ &\dots &\Longrightarrow & (a,b)
ot\in G' & ext{(with high probability)} \end{aligned}$$

Theorem

If $G' \subseteq G^{\langle n^{4/7} \rangle}$, then using $O(n^{9/7})$ (quantum) queries

G' can be efficiently partitioned into $T \cup E$ such that:

- T contains only $O(n^{3-1/7})$ triangles
- $E \cap G$ has size $O(n^{2-1/7})$

Construction of G': $O(n^{10/7})$

Classification of G':

few triangles _

 $O(n^{9/7})$

Find a triangle inside $G: O(n^{10/7})$

- Quantum $_$ Search for a triangle in G among all triangles inside T $|\mathrm{Triangles}(T)| = O(n^{3-1/7}) \implies O(\sqrt{n^{3-1/7}}) = O(n^{10/7})$
- Quantum \blacksquare Search for a triangle in G intersecting with E

 $|E \cap G| = O(n^{2-1/7}) \implies O(n + \sqrt{n imes n^{2-1/7}}) = O(n^{10/7})$

Theorem

$$\mathsf{QQC}(\mathrm{Triangle}) = ilde{O}(n^{10/7})$$

k-Collision problem (on a finite set S)

- Oracle Input:A function f which determines a k-ary relation $\mathcal{C}\subseteq S^k$
- Output: An element of \mathcal{C} if there is any, reject otherwise

Examples

- Grover search: $k=1,S=[n],f:[n]
 ightarrow \{0,1\}$ $\mathcal{C}=\{x:f(x)=1\}$
- Element distinctness:

$$egin{aligned} k=2,S=[n],f:[n]
ightarrow [n] \ \mathcal{C}=\{(x,y):x < y,f(x)=f(y)\} \end{aligned}$$

- Triangle: $S = [n], f_G : [n]^2 \rightarrow \{0, 1\}$ $k = 3, C = \{\text{Triangles}(G)\}$ $k = 2, C = \{\text{Triangle edges}(G)\}$ Remark: Triangle edge $\xrightarrow{+O(\sqrt{n}) \text{ queries}}$ Triangle

Database built from *f*

- Query language: $A \subseteq S \mapsto D(A)$
- Checking procedure: Given D(A), find a collision in A^k , if there is any

Costs in queries to f

- Setup cost s(r): to setup D(A)
- Update cost u(r): to update $D(A)\mapsto D(A')$ when $A'=A\pm\{x\}$
- Checking cost c(r)

Examples

Problem	Collision relation	Database	Setup	Update	Checking
Grover	x:f(x)=1	$oldsymbol{f} _A$	r	1	0
ED	x < y : f(x) = f(y)	$f _A$	r	1	0
Triangle	Triangle edges	$G _A$	r^2	r	?

Theorem (Ambainis) $\mathsf{QQC} = O(s(r) + (rac{n}{r})^{k/2} imes (c(r) + \sqrt{r} imes u(r)))$ n = |S|

 $A \subset S, |A| = r$

Subproblem

- Oracle Input: $G \subseteq [n]^2$
- Additional inputs: a vertex $v_0 \in [n]$, and $G|_A$ (from database)
- Output: A triangle containing v_0 and an edge of $G|_A$, if there is any

Reduction: $c(r) \leq \sqrt{n} \times QQC(Subproblem)$

Problem

- Oracle Input: $f:[r]
 ightarrow \{0,1\}$
- Additional input: a graph $H \subseteq [r]^2$
- Output

An edge $(u, v) \in H : f(u) = f(v) = 1$, if there is any Reject, otherwise

Theorem ${f QQC}=\Omega(\sqrt{r})$ (best possible using adversary methods) ${f QQC}=O(r^{2/3})$

Proof

 $\begin{array}{c|c|c|c|c|c|c|c|c|} \hline \textit{Collision relation} & k=2 & \textit{Database} & \textit{Setup} & \textit{Update} & \textit{Checking} \\ \hline (u,v) \in G: f(u) = f(v) = 1 & f|_A & r' & 1 & 0 \\ \hline \textit{QQC} = O(r' + (\frac{r}{r'})^{2/2}(0 + \sqrt{r'} \times 1)) \\ &= O(r' + \frac{r}{\sqrt{r'}}) \\ &\to O(r^{2/3}) & (r' = r^{2/3}) \end{array}$

Theorem

 $\mathsf{QQC}(\mathrm{Triangle}) = O(n^{1.3})$

Proof

Collision relationk = 2DatabaseSetupUpdateCheckingTriangle edges $G|_A$ r^2 r $\sqrt{n} \times r^{2/3}$ QQC = $O(r^2 + (\frac{n}{r})^{2/2}(\sqrt{n} \times r^{2/3} + \sqrt{r} \times r))$

$$=O(r^2+rac{n}{r^{1/3}}(\sqrt{n}+r^{5/6})) \ o O(n^{1.2}+n^{1.3}+n^{1.3}) \qquad (r=n^{3/5})$$

Improvement?

 $QQC(GraphCollision) = O(\sqrt{r}) \implies QQC(Triangle) = O(n^{1.25})$

Having a copy of a given graph

- Parameter: a graph H with l>3 vertices
- Oracle Input: $G \subseteq [n]^2$
- Output: A copy of H, if there is any

Theorem

$$\mathsf{QQC} = O(n^{2-2/l})$$

Proof

 Collision relation k = l - 1 Database
 Setup
 Update
 Checking

 l - 1 H-vertices
 $G|_A$ r^2 r $\sqrt{n} \times r^{(l-1)/l}$
 $QQC = O(r^2 + (\frac{n}{r})^{(l-1)/2}(\sqrt{n} \times r^{(l-1)/l} + \sqrt{r} \times r))$ $= O(r^2 + (\frac{n}{r})^{(l-3)/2} \times \frac{n^{3/2}}{r^{1/l}} + (\frac{n}{r})^{(l-4)/2} \times n^{3/2})$
 $\to O(n^{2-2/l} + o(n^{2-2/l}) + n^{2-2/l})$ $(r=n^{1-1/l})$

Corollary

Monotone graph properties whose 1-certificates have at most l>3 vertices $\mathsf{QQC}=O(n^{2-2/l})$

Conclusion

Quantum query complexity of Triangle Problem

- Using $O(\log n)$ qubits and Grover search:

 $ilde{O}(n^{10/7}) = O(n^{1.43})$

- Using O(n) qubits and Database reformulation of Ambainis QW: $O(n^{1.3})$
- Tight bound?

Best possible lower bound using adversary methods: $\Omega(n)$ Best possible upper bound using second algorithm: $O(n^{1.25})$

Extension to Monotone Graph Properties $QQC = O(n^{2-2/l})$

l:vertex certificate size

Determinant

- Checking $\det(A) \stackrel{?}{=} 0$

Query (random & quantum): $\Theta(n^2)$ Time (random & quantum): $O(n^{2.38})$ [Ambainis, Buhrman, Høyer, Karpinski, Kurar, Midrijanis'02; Santha'03]

Relation to Bipartite Perfect Matching

- Randomly
 - Query: $\Theta(n^2)$

Time: $O(n^{2.38})$ from a reduction to Determinant

- Quantumly
 - Query: $[\Omega(n^{3/2}), O(n^2)]$ Time: $O(n^2)$

[Ambainis, Karpinski'02, Dürr'03]

[Ambainis, Karpinski'02]

_ Question:

$$\mathsf{QQC}(\mathrm{BPM}) \stackrel{?}{=} o(n^2)$$