Quantum Algorithms for the Triangle Problem

Frédéric Magniez
http://www.Iri.fr/~magniez

joint work with

Miklos Santha
Mario Szegedy

CNRS-LRI (Université Paris-Sud)
Rutgers University

Oracle Input

- A (non-oriented) graph G on n vertices given as a black-box

Output

- A triangle, if there is any
- Reject, otherwise

Query model

- Query: $(i, j) \in[n]^{2}$
- Answer: 1 if $(i, j) \in G, 0$ otherwise
- Complexity: number of queries (QQC)

Ouput: $(1,2,3)$

Generalities

- Deterministically: $\Theta\left(n^{2}\right) \quad$ [Rivest,Villemin'76]
- Randomly: $\quad \Omega\left(n^{4 / 3} \log ^{1 / 3} n\right) \quad$ [Hajnal'91; Chakrabarti, Khot'01]

Conjecture: $\quad \Theta\left(n^{2}\right)$

- Quantumly: $\quad \Omega\left(n^{2 / 3} \log ^{1 / 6} n\right) \quad[$ Yao'01]

Conjecture: $\quad \Omega(n)$

Observations on QQC

- Any complexity in $\left[n, n^{2}\right]$ is possible
- Most of natural properties have complexity in $\left\{n, n^{3 / 2}, n^{2}\right\}$

Examples

- Having an edge, a star: $\Theta(n)$
- Connectivity, ...: $\tilde{\Theta}\left(n^{3 / 2}\right)$ [Dürr, Heiligman, Hoyer, Mhalla'04]
- Majority: $\Theta\left(n^{2}\right)$

Multiplication

- Checking $\quad A \times B \stackrel{?}{=} C$

Randomly (time \& query): $\Theta\left(n^{2}\right)$
Quantumly: $\left[\Omega\left(n^{3 / 2}\right), O\left(n^{5 / 3}\right)\right] \quad \begin{aligned} & \text { [Ambainis, Buhrman, Hoyer, } \\ & \text { Karpinski, Kurar, Midrijianis'O2] }\end{aligned}$

- Computing $A \times B=$?

Random \& Quantum time : $O\left(n^{2.38}\right)$

Relation to Triangle

- Randomly

Query: $\Theta\left(n^{2}\right)$
Time: $O\left(n^{2.38}\right)$ from a reduction to Matrix Multiplication

- Quantumly, the situation is different:

$$
\text { QQC }(\text { Triangle })=o\left(n^{3 / 2}\right) \quad[\text { Next slide... }]
$$

Previous results

- Randomly

Tight bound: $\Theta\left(n^{2}\right)$

- Quantumly

Lower bound: $\Omega(n) \quad$ (best possible using adversary methods) Upper bound: $O\left(n^{3 / 2}\right), O(n+\sqrt{n|G|}) \quad$ [Buhrman, Dürr, Heiligman,

$$
O(n \sqrt{d}) \quad \text { Høyer, M, Santha, Wolf’OI] }
$$

This Talk

- Using $O(\log n)$ qubits: $\tilde{O}\left(n^{10 / 7}\right)=O\left(n^{1.43}\right)$
- Using $O(n)$ qubits: $\quad O\left(n^{1.3}\right)$

Main tool: Grover search

- Oracle Input: $f:[n] \rightarrow\{0,1\}$
- Output: x such that $f(x)=1$
- $\mathrm{QQC}=\Theta(\sqrt{n})$

Triangle between candidates

- Additional input: a set of triangles $T \subseteq[n]^{3}$
- Output:A triangle of G among those of T, if there is any
- $\mathrm{QQC}=O(\sqrt{|T|})$

Triangle with a golden edge

- Additional input: a set of edges $E \subseteq[n]^{2}$
- Output:A triangle of G containing an edge of E
- $\mathrm{QQC}=O(\sqrt{|\boldsymbol{E}|}+\sqrt{n|\boldsymbol{E} \cap G|})$ by a generalization of [BDHHMSW'ol]

Naive algorithm

I. While $\exists v: d_{G}(v) \geq n^{1-\delta}$
a. Compute $\nu_{G}(v)$

b. If $G \cap \nu_{G}(v)^{2} \neq \emptyset$, output the triangle induced by v
c. Otherwise disconnect v from G
2. Do [BDHHMSW'OI] Algorithm

Query complexity

I. Search: \sqrt{n}, degree checking: $n^{\delta / 2} \quad \rightarrow n^{(1+\delta) / 2}$
a. Computation: n
b. Intersection: $\sqrt{\left|\nu_{G}(v)\right|^{2}} \leq n$

Number of iterations: W
2. Standard algorithm: $n^{(3-\delta) / 2}$

Total: $\boldsymbol{T}=W \times n+n^{(3-\delta) / 2}$
Lucky: $\quad W \leq n^{2} /\left(n^{1-\delta}\right)^{2} \leq n^{2 \delta} \Longrightarrow T \leq n^{1.4}$ when $\delta=1 / 5$
Unlucky: $\quad W \leq n \Longrightarrow T \leq n^{2} \quad$ when $\delta=0$

Preparation

I. Let $k=\Theta\left(n^{3 / 7}\right) \times \log n$
2. Randomly choose $v_{1}, v_{2}, \ldots, v_{k} \in[n]$
3. Compute every neighborhood $\nu_{G}\left(v_{i}\right)$

Quantum 4. If $G \cap\left(\nu_{G}\left(v_{i}\right)\right)^{2} \neq \emptyset$, then output the triangle induced by v_{i}
5. Otherwise $G \subseteq G^{\prime}=[n]^{2} \backslash \cup\left(\nu_{G}\left(v_{i}\right)\right)^{2}$

Query complexity: $k \times n+k \times O\left(\sqrt{n^{2}}\right)=O\left(n^{10 / 7}\right)$

Definition

$$
G^{(t)}=\frac{\text { def }}{=}\{(a, b):|\{v:(a, v),(v, b) \in G\}| \leq t\}
$$

Main lemma

$$
(a, b) \in G^{\langle 3\rangle}
$$

$$
G^{\prime} \subseteq G^{\left\langle n^{4 / 7}\right\rangle} \quad \text { (with high probability) }
$$

Proof

$$
(a, b) \notin G^{\left\langle n^{4 / 7}\right\rangle} \Longrightarrow \operatorname{Pr}_{v}\left[a, b \in \nu_{G}(v)\right]>\frac{n^{4 / 7}}{n}=\frac{1}{n^{3 / 7}}
$$

$$
\ldots \Longrightarrow(a, b) \notin G^{\prime} \quad \text { (with high probability) }
$$

Fact: $G^{\prime} \subseteq G^{\prime(t\rangle} \Longrightarrow\left|\operatorname{Triangles}\left(G^{\prime}\right)\right| \leq n^{2} \times t$

Theorem

If $G^{\prime} \subseteq G^{\left\langle n^{4 / 7}\right\rangle}$, then using $O\left(n^{9 / 7}\right)$ (quantum) queries
G^{\prime} can be efficiently partitioned into $T \cup E$ such that:

- T contains only $O\left(n^{3-1 / 7}\right)$ triangles
- $E \cap G$ has size $O\left(n^{2-1 / 7}\right)$

Construction of G^{\prime} :
 $O\left(n^{10 / 7}\right)$

Classification of G^{\prime} :

Find a triangle inside G : $O\left(n^{10 / 7}\right)$ $O\left(n^{9 / 7}\right)$
$O\left(n^{10 / 7}\right)$

Quantum - Search for a triangle in G among all triangles inside T

$$
|\operatorname{Triangles}(T)|=O\left(n^{3-1 / 7}\right) \Longrightarrow O\left(\sqrt{n^{3-1 / 7}}\right)=O\left(n^{10 / 7}\right)
$$

Quantum - Search for a triangle in G intersecting with E

$$
|E \cap G|=O\left(n^{2-1 / 7}\right) \Longrightarrow O\left(n+\sqrt{n \times n^{2-1 / 7}}\right)=O\left(n^{10 / 7}\right)
$$

Theorem

$$
\mathrm{QQC}(\text { Triangle })=\tilde{O}\left(n^{10 / 7}\right)
$$

k-Collision problem (on a finite set S)

- Oracle Input:A function f which determines a k-ary relation $\mathcal{C} \subseteq S^{k}$
- Output:An element of \mathcal{C} if there is any, reject otherwise

Examples

- Grover search:

$$
\begin{aligned}
& k=1, S=[n], f:[n] \rightarrow\{0,1\} \\
& \mathcal{C}=\{x: f(x)=1\}
\end{aligned}
$$

- Element distinctness: $k=2, S=[n], f:[n] \rightarrow[n]$

$$
\mathcal{C}=\{(x, y): x<y, f(x)=f(y)\}
$$

- Triangle:

$$
\begin{aligned}
S & =[n], f_{G}:[n]^{2} \rightarrow\{0,1\} \\
k & =3, \mathcal{C}=\{\operatorname{Triangles}(G)\} \\
k & =2, \mathcal{C}=\{\text { Triangle edges }(G)\}
\end{aligned}
$$

Remark: Triangle edge $\xrightarrow{+O(\sqrt{n}) \text { queries }}$ Triangle

Database built from f

- Query language: $A \subseteq S \mapsto D(A)$
- Checking procedure: Given $D(A)$, find a collision in A^{k}, if there is any

Costs in queries to f

- Setup cost $s(r)$:to setup $D(A)$

$$
A \subseteq S,|A|=r
$$

- Update cost $u(r)$: to update $D(A) \mapsto D\left(A^{\prime}\right)$ when $A^{\prime}=A \pm\{x\}$
- Checking cost $c(r)$

Examples

Problem	Collision relation	Database	Setup	Update	Checking
Grover	$x: f(x)=1$	$\left.f\right\|_{A}$	r	1	0
ED	$x<y: f(x)=f(y)$	$\left.f\right\|_{A}$	r	1	0
Triangle	Triangle edges	$\left.G\right\|_{A}$	r^{2}	r	$?$

Theorem (Ambainis)

$$
\mathrm{QQC}=O\left(s(r)+\left(\frac{n}{r}\right)^{k / 2} \times(c(r)+\sqrt{r} \times u(r))\right) \quad \text { } \quad n=|S|
$$

Subproblem

- Oracle Input: $G \subseteq[n]^{2}$
- Additional inputs: a vertex $v_{0} \in[n]$, and $\left.G\right|_{A}$ (from database)
- Output: A triangle containing v_{0} and an edge of $\left.G\right|_{A}$, if there is any

Reduction: $c(r) \leq \sqrt{n} \times \mathbf{Q Q C}($ Subproblem $)$

Encoding of Subproblem

$$
\begin{aligned}
f: A & \rightarrow\{0,1\} \\
v & \mapsto\left\{\begin{array}{l}
1:\left(v_{0}, v\right) \in G \\
0:\left(v_{0}, v\right) \notin G
\end{array}\right.
\end{aligned}
$$

$v_{0} \times\left. G\right|_{A}$ contains a triangle iff $\left.G\right|_{A}$ has a 1-1 edge

Problem

- Oracle Input: $f:[r] \rightarrow\{0,1\}$
- Additional input: a graph $H \subseteq[r]^{2}$
- Output

An edge $(u, v) \in H: f(u)=f(v)=1$, if there is any Reject, otherwise

Theorem

$$
\begin{aligned}
& \mathrm{QQC}=\Omega(\sqrt{r}) \quad \text { (best possible using adversary methods) } \\
& \mathrm{QQC}=O\left(r^{2 / 3}\right)
\end{aligned}
$$

Proof

Collision relation $k=2$	Database	Setup	Update	Checking
$(u, v) \in G: f(u)=f(v)=1$	$\left.f\right\|_{A}$	r^{\prime}	1	0

$$
\begin{aligned}
\mathrm{QQC} & =O\left(r^{\prime}+\left(\frac{r}{r^{\prime}}\right)^{2 / 2}\left(0+\sqrt{r^{\prime}} \times 1\right)\right) \\
& =O\left(r^{\prime}+\frac{r}{\sqrt{r^{\prime}}}\right) \\
& \rightarrow O\left(r^{2 / 3}\right) \quad\left(r^{\prime}=r^{2 / 3}\right)
\end{aligned}
$$

Theorem

$$
\text { QQC }(\text { Triangle })=O\left(n^{1.3}\right)
$$

Proof

Collision relation $k=2$	Database	Setup	Update	Checking
Triangle edges	$\left.G\right\|_{A}$	r^{2}	r	$\sqrt{n} \times r^{2 / 3}$

$$
\begin{aligned}
\mathrm{QQC} & =O\left(r^{2}+\left(\frac{n}{r}\right)^{2 / 2}\left(\sqrt{n} \times r^{2 / 3}+\sqrt{r} \times r\right)\right) \\
& =O\left(r^{2}+\frac{n}{r^{1 / 3}}\left(\sqrt{n}+r^{5 / 6}\right)\right) \\
& \rightarrow O\left(n^{1.2}+n^{1.3}+n^{1.3}\right) \quad\left(r=n^{3 / 5}\right)
\end{aligned}
$$

Improvement?
$\mathrm{QQC}($ GraphCollision $)=O(\sqrt{r}) \Longrightarrow \mathrm{QQC}($ Triangle $)=O\left(n^{1.25}\right)$

Having a copy of a given graph

- Parameter: a graph H with $l>3$ vertices
- Oracle Input: $G \subseteq[n]^{2}$
- Output:A copy of \boldsymbol{H}, if there is any

Theorem

$$
\mathrm{QQC}=O\left(n^{2-2 / l}\right)
$$

Proof

Collision relation $k=l-1$	Database	Setup	Update	Checking
$l-1 H$-vertices	$\left.G\right\|_{A}$	r^{2}	r	$\sqrt{n} \times r^{(l-1) / l}$
QQC $=O\left(r^{2}+\left(\frac{n}{r}\right)^{(l-1) / 2}\left(\sqrt{n} \times r^{(l-1) / l}+\sqrt{r} \times r\right)\right)$				
$=O\left(r^{2}+\left(\frac{n}{r}\right)^{(l-3) / 2} \times \frac{n^{3 / 2}}{r^{1 / l}}+\left(\frac{n}{r}\right)^{(l-4) / 2} \times n^{3 / 2}\right)$				
$\rightarrow O\left(n^{2-2 / l}+o\left(n^{2-2 / l}\right)+n^{2-2 / l}\right) \quad\left(r=n^{1-1 / l}\right)$				

Corollary
Monotone graph properties whose 1-certificates have at most $l>3$ vertices

$$
\mathrm{QQC}=O\left(n^{2-2 / l}\right)
$$

Quantum query complexity of Triangle Problem

- Using $O(\log n)$ qubits and Grover search:

$$
\tilde{O}\left(n^{10 / 7}\right)=O\left(n^{1.43}\right)
$$

- Using $O(n)$ qubits and Database reformulation of Ambainis QW :

$$
O\left(n^{1.3}\right)
$$

- Tight bound?

Best possible lower bound using adversary methods: $\Omega(n)$
Best possible upper bound using second algorithm: $O\left(n^{1.25}\right)$

Extension to Monotone Graph Properties

$$
\mathrm{QQC}=O\left(n^{2-2 / l}\right)
$$

l : vertex certificate size

Determinant

- Checking

$$
\operatorname{det}(A) \stackrel{?}{=} 0
$$

Query (random \& quantum): $\Theta\left(n^{2}\right)$
[Ambainis, Buhrman, Høyer, Karpinski,
Time (random \& quantum): $O\left(n^{2.38}\right)$

Relation to Bipartite Perfect Matching

- Randomly

Query: $\Theta\left(n^{2}\right)$
Time: $O\left(n^{2.38}\right)$ from a reduction to Determinant

- Quantumly

Query: $\left[\Omega\left(n^{3 / 2}\right), O\left(n^{2}\right)\right] \quad$ [Ambainis, Karpinski'02, Dürr'03]
Time: $O\left(n^{2}\right) \quad$ [Ambainis, Karpinski'02]

- Question:

$$
\operatorname{QQC}(\mathrm{BPM}) \stackrel{?}{=} o\left(n^{2}\right)
$$

