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I.I.

Communication complexity with bounded Communication complexity with bounded 
memorymemory

MotivationMotivation: What is the computational : What is the computational 
power of quantum computation with a power of quantum computation with a 
limited number of qubits?limited number of qubits?



Model A): Quantum communication Model A): Quantum communication 
complexitycomplexity

Cost of a protocol: number of qubits sent
Complexity Q(f ) : cost of best protocol

Qubits

Outputs



Model B): Memory bounded Model B): Memory bounded 
quantum circuitsquantum circuits

Circuits on Circuits on S S 
qubits, accessing qubits, accessing 
input as oracleinput as oracle
U: unitary op
output gate:
controlled not to
extra qubit
Q: query gate:



Model C): Communicating quantum Model C): Communicating quantum 
circuits, bounded memorycircuits, bounded memory

Quantum circuit in two partsQuantum circuit in two parts
Separate input oraclesSeparate input oracles
Circuit with Circuit with C C qubit wires crossing uses qubit wires crossing uses 
communication communication CC
Work onWork on S S qubitsqubits

Alice BobInput x
Input y



ConventionsConventions

Outputs are sent to the other circuitOutputs are sent to the other circuit
Circuits may “drop” qubits and useCircuits may “drop” qubits and use
fresh qubitsfresh qubits



An ExampleAn Example

DISJ(x,yDISJ(x,y)=1 )=1 iffiff ∑∑i=1..ni=1..n xxi i ÆÆ yyii > 0> 0
GroverGrover--like Protocol [BCW98]like Protocol [BCW98]
searches forsearches for i i with with xxii==yyii=1=1
Uses Uses O(logO(log n)n) qubits and qubits and O(nO(n1/21/2 log n)log n)
communicationcommunication
No classical protocol is better than No classical protocol is better than ΩΩ(n)(n)
[KS87] (independent of space)[KS87] (independent of space)
O(nO(n)) with space with space O(logO(log n)n) possiblepossible
So does more memory ever help?So does more memory ever help?



FunctionsFunctions

Let Let f:{0,1}f:{0,1}nn££{0,1}{0,1}n n αα {0,1}{0,1}
ThenThen ffl,rl,r computes oncomputes on
{0,1}{0,1}n n ¢¢ ll ££ {0,1}{0,1}n n ¢¢ rr

f(x,yf(x,y)) for all for all l l ¢¢ rr pairs of inputs (pairs of inputs (lrlr
outputs)outputs)

x1
x2
.
.
xl

y1
y2
y3
.
.
yr



FunctionsFunctions

Examples:Examples:
IP(x,yIP(x,y) = ) = ©©i=1..ni=1..n xxi i ÆÆ yyii (inner product)(inner product)
DISJ(x,yDISJ(x,y) = 1  ) = 1  iffiff ∑∑i=1..ni=1..n xxi i ÆÆ yyii > 0> 0

DISJDISJn,nn,n Boolean matrix productBoolean matrix product
IPIPn,nn,n Matrix product GF(2)Matrix product GF(2)
IPIPn,1n,1 Matrix vector productMatrix vector product



Complexity NotationComplexity Notation

Always allow error 1/3Always allow error 1/3
CCSS(f(f)) denotes classical communicationdenotes classical communication
with space with space SS
QQSS(f(f)) denotes quantum communication denotes quantum communication 
with space with space SS



ResultsResults

Inner Product:Inner Product:

CCSS(IP(IPl,rl,r) < O (l r n / ) < O (l r n / min{S,lmin{S,l} )} )

QQSS(IP(IPl,rl,r) > ) > ΩΩ(l r n / S)(l r n / S)

CCSS(IP(IPn,nn,n ) = ) = ΘΘ(n(n33/S)=/S)=ΘΘ((QQSS(IP(IPn,nn,n))))

CCSS(IP(IPn,1n,1 ) = ) = ΘΘ(n(n22/S)=/S)=ΘΘ(Q(QSS(IP(IPn,1n,1))))



ResultsResults

More general, More general, f f with discrepancy bound with discrepancy bound dd
have have QQSS(f(fl,rl,r) > ) > ΩΩ( l r d / S)( l r d / S)..

Classically: Classically: BeameBeame et al. prove lower et al. prove lower 
bounds for universal hash functionsbounds for universal hash functions



What about DISJ?What about DISJ?

DisjointnessDisjointness::

QQSS(DISJ(DISJl,rl,r) < Õ (l r n) < Õ (l r n1/21/2 / S/ S1/21/2))

QQSS(DISJ(DISJn,nn,n)< Õ(n)< Õ(n2.5 2.5 / S/ S1/21/2))

QQSS(DISJ(DISJn,1n,1)< Õ(n)< Õ(n1.5 1.5 / S/ S1/21/2))

Even classical lower bound forEven classical lower bound for DISJDISJn,nn,n unknown!, unknown!, 
probably probably ΘΘ(n(n33 / S)/ S)



II.II.

Inner product modulo 2Inner product modulo 2



Inner product, upper boundInner product, upper bound

AsumeAsume l,rl,r > S> S
SolveSolve IPIPS,1S,1 and iterate and iterate l/S l/S ¢¢ rr timestimes
To solveTo solve IPIPS,1S,1 Bob sends Bob sends SS bits of his bits of his 
input, Alice computes  partial sums for all input, Alice computes  partial sums for all 
SS function valuesfunction values
Iterate Iterate n/Sn/S timestimes
Overall complexity Overall complexity l/S l/S ¢¢ r r ¢¢ SS¢¢ n/S=l r n / n/S=l r n / 
SS
Storage Storage SS



Inner product, upper boundInner product, upper bound

S BitsS rows

Compute © i=1..Sx(j)
i Æ yi for all j=1..S

Compute ©i=1..2Sx(j)
i Æ yi for all j=1..S

etc.

S Bits

x1
x2
.
.
xS



The lower boundThe lower bound

f:{0,1}f:{0,1}nn ££ {0,1}{0,1}nn αα {0,1}{0,1}
MMff is the is the 
communication matrix:communication matrix:

RectangleRectangle: product set: product set
in the matrixin the matrix

f(x,y)x

y



The discrepancy boundThe discrepancy bound

disc(fdisc(f)=)=maxmaxRR ||µµ(R (R ÅÅ ff--11(1))(1))--µµ(R (R ÅÅ ff--11(0))| (0))| 
over rectangles over rectangles RR (uniform distribution (uniform distribution µµ))
[KY]: [KY]: Q(fQ(f)> )> ΩΩ((--log log disc(fdisc(f))))

Here: Here: QQSS(f(fl,rl,r) > ) > ΩΩ((lrlr ¢¢ --log(disc(flog(disc(f))/S)))/S)



ApplicationApplication

[[ChorChor et al.] et al.] disc(IPdisc(IP)<1/2)<1/2n/2n/2

Hence  Hence  QQSS ((IPIPl,rl,r) >) >ΩΩ((lrnlrn/S)/S)

Matrix Product over GF(2) needsMatrix Product over GF(2) needs
communication communication nn33/S/S,,
Matrix Vector Product needsMatrix Vector Product needs nn22/S/S



How to prove itHow to prove it

Given circuit pair with communication Given circuit pair with communication C C and and 
space space SS
Slice the circuit into segments containing Slice the circuit into segments containing 
communication communication dd, if , if disc(fdisc(f) ) ¼¼ 1/21/2dd

Intuitively not enough communication toIntuitively not enough communication to
compute compute f f even onceeven once
Show that each slice can make few outputs, Show that each slice can make few outputs, 
namely namely O(S)O(S)
Then Then C/d C/d ¢¢ S > S > ΩΩ( l r )( l r )



Slicing the circuit
Show: <O(S) outputs

Communication C

Comm d

Comm d



How to prove itHow to prove it

If each slice has If each slice has O(S)O(S) outputs, then:outputs, then:
C/d C/d ¢¢ O(S) > O(S) > lrlr
Furthermore can assume that Furthermore can assume that S < S < o(do(d),),
since else with since else with C>C>lrlr we get we get C>C>ΩΩ((lrdlrd/S)/S)



The initial information

Suppose a circuit produces some output 
with probability p, given some initial state
ρ on S qubits.
Idea: replace ρ by the totally mixed state.
Claim: circuit succeeds with probability
p/2S

Reason: every quantum state “sits” in the 
totally mixed state with “size” 1/2S



Why that?

Totally mixed state is 
M=diag(1/2S,...,1/2S)
For all density matrices ρ there is a 
density matrix σ so that
M=1/2Sρ+(1-1/2S)σ



Direct ProductsDirect Products

Given communicating quantum circuits Given communicating quantum circuits 
with communication with communication dd
Produce Produce LL outputs with success probabilityoutputs with success probability
2/3  2/3  ¢¢ 1/21/2SS..
Show that all such circuits have success Show that all such circuits have success 
probability at most probability at most 1/21/2ΩΩ(L)(L)

Then Then L=O(S)L=O(S)
Need to show this only for Need to show this only for L<L<o(do(d))



Direct ProductsDirect Products

ffl,rl,r with with disc(fdisc(f)<1/2)<1/2dd..
Select Select L=const L=const ¢ ¢ S = S = o(do(d)) and and L<L<lrlr
andand L L outputs for outputs for f(xf(xii,y,yjj))
Show that success probability of a Show that success probability of a 
quantum protocol w/ communication quantum protocol w/ communication dd
is is 1/21/2ΩΩ(L)(L)

Hardest case: Hardest case: L=L=lrlr (most dependencies)(most dependencies)



Direct ProductsDirect Products

Know that each rectangle in Know that each rectangle in {0,1}{0,1}nn££{0,1}{0,1}nn

contains contains ½½§§ 1/21/2dd zerozero--inputs and inputs and ½½§§1/21/2dd

oneone--inputs or has size inputs or has size < 1/2< 1/2dd

A)A) Show that rectangles in Show that rectangles in {0,1}{0,1}nlnl££{0,1}{0,1}nrnr contain contain 
each of each of L=2L=2lrlr function values with probabilityfunction values with probability
1/21/2LL +1/2+1/2d/2d/2 for for L<L<o(do(d))

B)B) Show that each quantum protocol with Show that each quantum protocol with 
communicationcommunication dd and correctness and correctness 22--o(L)o(L) induces induces 
better rectanglesbetter rectangles



A)A)

Rectangle in Rectangle in {0,1}{0,1}nlnl££{0,1}{0,1}nrnr

What is probability of What is probability of f(xf(xii,y,yii)=)=ccijij for all for all i,ji,j
and some fixed and some fixed ccijij??

Product of conditional probabilities that Product of conditional probabilities that 
f(xf(xii,y,yjj)=)=ccijij given previous given previous f(xf(xuu,y,yvv)=)=ccuvuv..



A)A)

Current input pair: Current input pair: xxii,y,yjj

Conditions not involving xConditions not involving xii or or yyjj , white, white
Conditions involving xConditions involving xii or or yyjj , , redred

y1
y2
y3
.
.

yj-1
yj

x1
x2
x3
.
.

xi-1
xi



A)A)

Fix all Fix all xxuu, , yyvv other than other than xxii, , yyjj

Obtain rectangle Obtain rectangle R in {0,1}R in {0,1}nn££ {0,1}{0,1}nn

Case 1: Case 1: R R is smaller than is smaller than ½½dd

All such rectangles can have combined All such rectangles can have combined 
size size ½½dd at mostat most
(in uniform distribution on (in uniform distribution on {0,1}{0,1}lnln££{0,1}{0,1}rnrn))



A)A)

Other case: R is “large”Other case: R is “large”
Further conditions: Further conditions: f(xf(xii,y,yvv)=)=cciviv
(row conditions)(row conditions)
f(xf(xuu,y,yjj)=)=ccujuj (column conditions)(column conditions)
Lead to Lead to <2<2LL disjoint disjoint subrectanglessubrectangles
Each contains Each contains 1/21/2§§ 1/21/2dd zeroes/oneszeroes/ones
Overall R contains Overall R contains 1/21/2§§ 22LL/2/2dd zeroes/oneszeroes/ones



A) fin.A) fin.

Hence Hence 
Prob(f(xProb(f(xii,y,yjj)=)=ccijij)<1/2+2)<1/2+2LL/2/2d d < 1/2+2< 1/2+2d/2d/2

for all conditionsfor all conditions
Prob(f(xProb(f(xii,y,yjj)=)=ccijij for all for all i,ji,j))
< (1/2 +1/2< (1/2 +1/2d/2d/2))LL

< 1/2< 1/2L    L    + 2/2+ 2/2d/2d/2



B)B)

Given is a quantum protocol with Given is a quantum protocol with LL
outputs, communication C and success outputs, communication C and success 
probability probability 1/21/2LL +p +p 
Find a rectangle that contains inputsFind a rectangle that contains inputs
with with f(xf(xii,y,yjj)=)=ccijij in proportionin proportion
1/21/2LL+p/2+p/2CC

Proof by decomposing protocols into Proof by decomposing protocols into 
weighted rectanglesweighted rectangles



II.II.

DisjointnessDisjointness



DisjointnessDisjointness upper boundupper bound

DISJ(x,yDISJ(x,y)=1 )=1 iffiff ∑∑i=1..ni=1..n xxi i ÆÆ yyii > 0> 0

QQSS(DISJ(DISJl,rl,r) < Õ (l r n) < Õ (l r n1/21/2 / S/ S1/21/2))

QQSS(DISJ(DISJn,nn,n)< Õ(n)< Õ(n2.5 2.5 / S/ S1/21/2))

QQSS(DISJ(DISJn,1n,1)< Õ(n)< Õ(n1.5 1.5 / S/ S1/21/2))



Upper boundUpper bound

Solve DISJSolve DISJS,1S,1 with communicationwith communication
Õ( (nS)Õ( (nS)1/2 1/2 )) and space and space SS
Iterate Iterate lrlr/S/S times, communicationtimes, communication
Õ(lrÕ(lr/S/S¢¢ (nS)(nS)1/21/2) = ) = Õ(lrÕ(lr nn1/21/2/S/S1/21/2))



Protocol for DISJProtocol for DISJS,1S,1

Alice has sets Alice has sets xx11,...,,...,xxSS ; Bob has set ; Bob has set yy
Alice and Bob run a GroverAlice and Bob run a Grover--like protocollike protocol
on on z=z=[[ xxii and and yy
Find Find j j 22 z z ÅÅ yy
Determine all Determine all xxii with jwith j22 xxii, call their union , call their union 
z’z’
Set Set z=z=zz--zz’’ and iterate.and iterate.



ProtocolProtocol

ProblemProblem: cannot store : cannot store zz explicitlyexplicitly
(size (size nn))
Can store array of inputs Can store array of inputs xxii for which for which 
output is already computedoutput is already computed
Construct superposition Construct superposition ∑∑j:jj:j22 zz|j|jii from from 
oracle and arrayoracle and array
During the protocol use the oracle to During the protocol use the oracle to 
implement each Grover iterationimplement each Grover iteration



AnalysisAnalysis

Assume that Assume that |z |z ÅÅ y|=y|=KKll in step in step ll..
Then one element in the intersection can be Then one element in the intersection can be 
found with found with Õ(nÕ(n1/21/2 / / KKll

1/21/2)) Grover iterationsGrover iterations
All elements can be found  withAll elements can be found  with
Õ(nÕ(n1/21/2 ¢¢ KKll

1/21/2)) iterationsiterations
If If KKll < S< S then find all with then find all with (nS)(nS)1/21/2 at mostat most
If If KKll > S> S, then find one element with , then find one element with nn1/2 1/2 / S/ S1/21/2

at most , at most at most , at most SS iterationsiterations
Cost always Cost always (nS)(nS)1/21/2



ConclusionConclusion

Have analyzed the effect of a limited number of Have analyzed the effect of a limited number of 
qubits on the quantum communication qubits on the quantum communication 
complexitycomplexity
If the discrepancy bound is good, then quantum If the discrepancy bound is good, then quantum 
does not seem to helpdoes not seem to help
Matrix product over GF(2): no speedup by Matrix product over GF(2): no speedup by 
quantumquantum
For Boolean matrix vector product: given upper For Boolean matrix vector product: given upper 
boundbound



Open ProblemsOpen Problems

Lower bounds for Lower bounds for DISJDISJl,rl,r, i.e., for Boolean , i.e., for Boolean 
matrix products (even open classically)matrix products (even open classically)
CommunicationCommunication--space tradeoffs for space tradeoffs for 
decision decision problemssproblemss


