Tradeoffs between Quantum Memory and Communication

Hartmut Klauck University of Calgary

Communication complexity with bounded memory

Motivation: What is the computational power of quantum computation with a limited number of qubits?

Model A): Quantum communication complexity

Cost of a protocol: number of qubits sent Complexity Q(*f*) : cost of best protocol

Model B): Memory bounded quantum circuits

Circuits on S qubits, accessing input as oracle U: unitary op output gate: controlled not to extra qubit Q: query gate: $|i
angle|a
angle\mapsto|i
angle|a\oplus q(i)
angle$

Model C): Communicating quantum circuits, bounded memory

Quantum circuit in two parts
Separate input oracles
Circuit with *C* qubit wires crossing uses communication *C*Work on S qubits

Conventions

Outputs are sent to the other circuit
 Circuits may "drop" qubits and use fresh qubits

An Example

DISJ(x,y)=1 iff $\sum_{i=1...n} x_i \neq y_i > 0$ Grover-like Protocol [BCW98] searches for i with $x_i = y_i = 1$ Uses O(log n) qubits and O(n^{1/2} log n) communication No classical protocol is better than $\Omega(n)$ [KS87] (independent of space) O(n) with space $O(\log n)$ possible So does more memory ever help?

Functions

Let f:{0,1}ⁿ£{0,1}ⁿ α {0,1}
 Then f_{l,r} computes on
 {0,1}<sup>n \$ l £ {0,1}^{n \$ r}
 f(x,y) for all l \$ r pairs of inputs (Ir outputs)
</sup>

Functions

Examples: $\square IP(x,y) = \bigcirc_{i=1..n} x_i \not = y_i \quad (inner product)$ DISJ(x,y) = 1 iff $\sum_{i=1...n} x_i \neq y_i > 0$ DISJ_{n.n} Boolean matrix product ■ IP_{n,n} Matrix product GF(2) Matrix vector product \blacksquare IP_{n,1}

Complexity Notation

Always allow error 1/3
 C_s(f) denotes classical communication with space S
 Q_s(f) denotes quantum communication with space S

Results

Inner Product: $C_{s}(IP_{Lr}) < O(|r n / min{S,|})$ $Q_{s}(IP_{Lr}) > \Omega(I r n / S)$ $C_{S}(IP_{n,n}) = \Theta(n^{3}/S) = \Theta(Q_{S}(IP_{n,n}))$ $C_{S}(IP_{n,1}) = \Theta(n^{2}/S) = \Theta(Q_{S}(IP_{n,1}))$

Results

More general, f with discrepancy bound d have Q_s(f_{l,r}) > Ω(| r d / S).

Classically: Beame et al. prove lower bounds for universal hash functions

What about DISJ?

Disjointness:
 Q_s(DISJ_{l,r}) < Õ (l r n^{1/2} / S^{1/2})
 Q_s(DISJ_{n,n}) < Õ(n^{2.5} / S^{1/2})
 Q_s(DISJ_{n,1}) < Õ(n^{1.5} / S^{1/2})

Even classical lower bound for DISJ_{n,n} unknown!, probably O(n³ / S)

Inner product modulo 2

Inner product, upper bound

- Asume I,r > S
- Solve IP_{5,1} and iterate I/S ¢ r times
 To solve IP_{5,1} Bob sends S bits of his input, Alice computes partial sums for all S function values
- Iterate n/S times
- Overall complexity I/S ¢ r ¢ S¢ n/S=I r n / S
- Storage S

Inner product, upper bound

Compute $\bigcirc_{i=1..S} x^{(j)}_i \not\in y_i$ for all j=1..SCompute $\bigcirc_{i=1..2S} x^{(j)}_i \not\in y_i$ for all j=1..S

 X_2

S rows

etc.

for all i-1 S

The lower bound

V

f(x,y)

f:{0,1}ⁿ £ {0,1}ⁿ α {0,1}
 M_f is the communication matrix: ^x

Rectangle: product set in the matrix

The discrepancy bound

 disc(f)=max_R |μ(R Å f¹(1))-μ(R Å f¹(0))| over rectangles R (uniform distribution μ)
 [KY]: Q(f)> Ω(-log disc(f))

- Here: $Q_s(f_{l,r}) > \Omega(lr \notin -log(disc(f))/S)$

Application

[Chor et al.] disc(IP)<1/2^{n/2} - Hence Q_{s} (IP_L) > Ω (Irn/S) Matrix Product over GF(2) needs communication n^3/S , Matrix Vector Product needs n²/S

How to prove it

- Given circuit pair with communication C and space S
- Slice the circuit into segments containing communication d, if disc(f) ¼ 1/2^d
- Intuitively not enough communication to compute f even once
- Show that each slice can make few outputs, namely O(S)
- Then C/d \notin S > Ω (| r)

Slicing the circuit

Show: <O(S) outputs

How to prove it

 If each slice has O(S) outputs, then: C/d ¢ O(S) > lr
 Furthermore can assume that S < o(d), since else with C>lr we get C>Ω(lrd/S)

The initial information

 Suppose a circuit produces some output with probability p, given some initial state
 on 5 qubits.

Idea: replace p by the totally mixed state.
 Claim: circuit succeeds with probability p/2^s

Reason: every quantum state "sits" in the totally mixed state with "size" 1/2⁵

Why that?

 Totally mixed state is M=diag(1/2⁵,...,1/2⁵)
 For all density matrices ρ there is a density matrix σ so that M=1/2⁵ρ+(1-1/2⁵)σ

Direct Products

Given communicating quantum circuits with communication d Produce L outputs with success probability $2/3 \notin 1/2^{s}$. Show that all such circuits have success probability at most $1/2^{\Omega(L)}$ Then L=O(S) Need to show this only for L<o(d)</p>

Direct Products

• f_{Lr} with disc(f)<1/2^d. Select L=const \notin S = o(d) and L<Ir and L outputs for $f(x_i, y_i)$ Show that success probability of a quantum protocol w/ communication d is $1/2^{\Omega(L)}$ Hardest case: L=lr (most dependencies)

Direct Products

Know that each rectangle in {0,1}ⁿ£{0,1}ⁿ contains ¹/2§ 1/2^d zero-inputs and ¹/2§1/2^d one-inputs or has size < 1/2^d

A) Show that rectangles in $\{0,1\}^{nl} \{0,1\}^{nr}$ contain each of L=2^{lr} function values with probability $1/2^{L} + 1/2^{d/2}$ for L<o(d)

B) Show that each quantum protocol with communication d and correctness 2^{-o(L)} induces better rectangles

Rectangle in {0,1}^{nl}£{0,1}^{nr}
 What is probability of f(x_i,y_i)=c_{ij} for all i,j and some fixed c_{ij}?

Product of conditional probabilities that $f(x_i, y_j) = c_{ij}$ given previous $f(x_u, y_v) = c_{uv}$.

Current input pair: x_i,y_j
 Conditions not involving x_i or y_j, white
 Conditions involving x_i or y_i, red

Fix all x_u, y_v other than x_i, y_j
Obtain rectangle R in {0,1}ⁿ£ {0,1}ⁿ
Case 1: R is smaller than ½^d All such rectangles can have combined size ½^d at most (in uniform distribution on {0,1}^{ln}£{0,1}^m)

Other case: R is "large" - Further conditions: $f(x_i, y_v) = c_{iv}$ (row conditions) $f(x_u, y_i) = c_{ui}$ (column conditions) ■ Lead to <2^L disjoint subrectangles Each contains 1/2§ 1/2^d zeroes/ones Overall R contains 1/2§ 2^L/2^d zeroes/ones

A) fin.

 Hence Prob(f(x_i,y_j)=c_{ij})<1/2+2^L/2^d < 1/2+2^{d/2} for all conditions

 Prob(f(x_i,y_j)=c_{ij} for all i,j) < (1/2 + 1/2^{d/2})^L < 1/2^L + 2/2^{d/2}

Given is a quantum protocol with L outputs, communication C and success probability 1/2^L +p Find a rectangle that contains inputs with $f(x_i, y_j) = c_{ij}$ in proportion $1/2^L + p/2^C$ Proof by decomposing protocols into weighted rectangles

Disjointness

Disjointness upper bound DISJ(x,y)=1 iff $\sum_{i=1..n} x_i A x_i > 0$ ■ $Q_{s}(DISJ_{l,r}) < \tilde{O} (l r n^{1/2} / S^{1/2})$ $Q_{s}(DISJ_{n,n}) < \tilde{O}(n^{2.5} / S^{1/2})$ $Q_{s}(DISJ_{n,1}) < \tilde{O}(n^{1.5} / S^{1/2})$

Upper bound

Solve DISJ_{S,1} with communication Õ((nS)^{1/2}) and space S
 Iterate lr/S times, communication Õ(lr/S¢ (nS)^{1/2}) = Õ(lr n^{1/2}/S^{1/2})

Protocol for DISJ_{S,1}

Alice has sets X₁,...,X_s ; Bob has set y Alice and Bob run a Grover-like protocol on $z = [x_i and y]$ Find j 2 z Å y Determine all x_i with j2 x_i , call their union 7 Set <u>z=z-z'</u> and iterate.

Protocol

Problem: cannot store z explicitly (size n) Can store array of inputs X_i for which output is already computed Construct superposition $\sum_{i:i2} \frac{j}{z}$ from oracle and array During the protocol use the oracle to implement each Grover iteration

Analysis

• Assume that $|z \wedge y| = K_1$ in step 1. Then one element in the intersection can be found with O(n^{1/2} / K₁^{1/2}) Grover iterations All elements can be found with $\tilde{O}(n^{1/2} \notin K_1^{1/2})$ iterations If K₁ < S then find all with (nS)^{1/2} at most If $K_1 > S$, then find one element with $n^{1/2} / S^{1/2}$ at most , at most S iterations Cost always (nS)^{1/2}

Conclusion

 Have analyzed the effect of a limited number of qubits on the quantum communication complexity

- If the discrepancy bound is good, then quantum does not seem to help
- Matrix product over GF(2): no speedup by quantum
- For Boolean matrix vector product: given upper bound

Open Problems

Lower bounds for DISJ_{I,r}, i.e., for Boolean matrix products (even open classically)
 Communication-space tradeoffs for decision problemss