Tradeoffis between Quantum Memory and Communication

Hartmut Klauck University of Calgary
I.

Communication complexity with bounded memory

Motivation: What is the computational power of quantum computation with a limited number of qubits?

Model A): Quantum communication complexity

Cost of a protocol: number of qubits sent Complexity $\mathrm{Q}(f)$: cost of best protocol

Model B): Memory bounded quantum circuits

Circuits on S
qubits, accessing input as oracle
U: unitary op

- output gate: controlled not to extra qubit

- Q: query gate:

$$
|i\rangle|a\rangle \mapsto|i\rangle|a \oplus q(i)\rangle
$$

Model C): Communicating quantum circuits, bounded memory

Quantum circuit in two parts
Separate input oracles
Circuit with C qubit wires crossing uses communication C
Work on S qubits

Conventions

Outputs are sent to the other circuit
Circuits may "drop" qubits and use fresh qubits

An Example

$-\operatorname{DISJ}(x, y)=1$ iffi $\sum_{i=1 . . n} x_{i} \mu_{E} y_{i}>0$

- Grover-like Protocol [BCW98] searches for is with $x_{i}=y_{i}=1$
\lrcorner Uses $O(\log n)$ qubits and $O\left(n^{1 / 2} \log n\right)$ communication
\lrcorner No classical protocol is better than $\Omega(\Omega)$ [KS87] (independent of space) $O(n)$ with space $O(\log n)$ possible
- So does more memory ever help?

Functions

\lrcorner Let $f:\{0,1\}^{n} £\{0,1\}^{n}$ a $\{0,1\}$
\lrcorner Then $f_{1, r}$ computes on $\{0,1\}^{\text {n }}$, $\mathcal{E}\{0,1\}^{n}$ er $f(x, y)$ for all I \& r pairs of inputs (Ir outputs)

Functions

- Examples:
$\lrcorner \mathbb{I} P(x, y)=\Theta_{i=1, n} x_{i} \not A_{E} y_{i} \quad$ (inner product)
$-\operatorname{DISJ}(x, y)=1$ ifff $\sum_{i=1, \ldots} x_{i} \not A_{E} y_{i}>0$
\lrcorner DISJ $_{n, n}$ Boolean matrix product
$-I_{\mathrm{n}, \mathrm{n}}$
$-\mathbb{I P}_{n}$
$n, 1$

Matrix vector product

Complexity Notation

Always allow error 1/3
$\lrcorner \mathrm{C}_{5}(f)$ denotes classical communication with space S
$\lrcorner \mathrm{Q}_{5}(f)$ denotes quantum communication with space S

Results

Inner Product:

$C_{S}\left(\mathbb{I P}_{1, r}\right)<O\left(I\right.$ rn $\left.\left./ \min \left\{S_{,} \mid\right\}\right\}\right)$

$Q_{S}\left(I P^{1, r}\right)>\Omega(1 / \Omega / S)$
$C_{S}\left(I_{n, n}\right)=\Theta\left(n^{3} / S\right)=\Theta\left(Q_{S}\left(I_{n, n}\right)\right)$
$C_{S}\left(\mathbb{I}_{n, 1}\right)=\Theta\left(n^{2} / S\right)=\Theta\left(Q_{S}\left(\mathbb{I}_{n, 1}\right)\right)$

Results

\lrcorner More general, f with discrepancy bound d have $\mathrm{Q}_{5}\left(\mathrm{f}_{1, \mathrm{I}}\right)>\Omega(\mid \mathrm{l} / \mathrm{d} / \mathrm{S})$.

Classically: Beame et al. prove lower bounds for universal hash functions

What about DISJ?

- Disjointness:

$$
\begin{aligned}
& \mathrm{Q}_{S}\left(\text { DISJ }_{1,5}\right)<\tilde{O}\left(1 r n^{1 / 2} / S^{1 / 2}\right) \\
& \mathrm{Q}_{S}\left(\text { DISJ }_{n, n}\right)<\tilde{O}\left(n^{2.5} / S^{1 / 2}\right) \\
& \mathrm{Q}_{S}\left(\text { DISJ }_{n, 1}\right)<\tilde{O}\left(n^{1.5} / S^{1 / 2}\right)
\end{aligned}
$$

Even classical lower bound for DISJ ${ }_{n, n}$ unknown!, probably $\Theta\left(n^{3} / S\right)$
II.

Inner product modulo 2

Inner product, upper bound

\lrcorner Asume $\mathrm{I}, r>\mathrm{S}$
Solve $\mathbb{I P}_{S, 1}$ and iterate $/ / S$ \& r times
To solve IPs,1 Bob sends S bits of his input, Alice computes partial sums for all S function values

- Iterate n/S times

Overall complexity I/S $\phi^{\prime} r \phi^{\prime} S \phi^{\prime} n / S=I r n /$ S
Storage S

Inner product, upper bound

Compute $\left.\bigodot_{i=1 . . S} x^{(\mathrm{j}}\right)_{\mathrm{i}} \not Æ_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$ for all $\mathrm{j}=1 . . \mathrm{S}$
Compute $\Theta_{i=1.2 s} \times()_{i} Æ_{E} y_{i}$ for all $j=1 . . S$
etc.

The lower bound

$\lrcorner f:\{0,1\}^{n} £\{0,1\}^{n} a\{0,1\}$
$-M_{f}$ is the communication matrix:

X

Rectangle: product set in the matrix

The discrepancy bound

$\lrcorner \operatorname{djsc}(f)=m a x_{R}\left|\mu\left(R A f^{-1}(1)\right)-\mu\left(R A f^{-1}(0)\right)\right|$ over rectangles R (uniform distribution μ)
$\lrcorner[K Y]: Q(f)>\Omega(-\log \operatorname{disc}(f))$

Application

[Chor et al]] disc (IP) $<1 / 2]^{1 / 2}$

- Hence $Q_{5}\left(\mathbb{P} \mathbb{P}_{, ~}\right)>\Omega(1 \mathrm{~m} / \mathrm{s})$

Matrix Product over GF(2) needs communication $n^{3} / S_{\text {, }}$, Matrix Vector Product needs n^{2} / S

How to prove it

Given circuit pair with communication C and space S

- Slice the circuit into segments containing communication d, if disc(f) $1 / 41 / 2^{d}$
- Intuitively not enough communication to compute f even once
- Show that each slice can make few outputs, namely O(S)
Then $C / d \phi S>\Omega(\| r)$

Slicing the circuit

Show: <O(S) outputs

How to prove it

\lrcorner If each slice has $O(S)$ outputs, then: C / d \& $O(S)>\mid r$

- Furthermore can assume that $\mathrm{S}<\mathrm{O}(\mathrm{d})$, since else with $C>\mid r$ we get $C>\Omega(\mid \mathrm{lrd} / \mathrm{S})$

The initial information

Suppose a circuit produces some output with probability p, given some initial state ρ on S qubits. Idea: replace ρ by the totally mixed state. Claim: circuit succeeds with probability $p / 2^{\text {s }}$

- Reason: every quantum state "sits" in the totally mixed state with "size" $1 / 2^{s}$

Why that?

Totally mixed state is M=diag($1 / 2^{\mathrm{S}}, \ldots, 1 / 2^{\mathrm{S}}$)
For all density matrices ρ there is a density matrix σ so that $M=1 / 2^{\mathrm{S}} \rho+\left(1-1 / 2^{\mathrm{S}}\right) \sigma$

Direct Products

Given communicating quantum circuits with communication d
\rightarrow Produce L outputs with success probability 2/3 \& 1/25.

- Show that all such circujits have success probability at most $1 / 2^{\Omega(L)}$
\lrcorner Then $\mathrm{L}=\mathrm{O}(\mathrm{S})$
\lrcorner Need to show this only for $L<0$ (d)

Direct Products

$\lrcorner \mathrm{f}_{1,5}$ with $\mathrm{djisc}(f)<1 / 2^{d}$.
Select $L=$ const $\& S=O(d)$ and $L<l_{r}$ and L outputs for $f\left(x_{i}, y_{j}\right)$

- Show that success probability of a quantum protocol w/ communication d is $1 / 2^{\Omega(L)}$
\lrcorner Hardest case: $L=I r$ (most dependencies)

Direct Products

\lrcorner Know that each rectangle in $\{0,1\},\{0,1\}$ n contains $1 / 2 \$ 1 / 2 d$ zero-inputs and $1 / 2 \$ 1 / 2^{d}$ one-inputs or has size $<1 / 2^{\text {d }}$
A) Show that rectangles in $\{0,1\}$ nnl $\{\{0,1\}$ nis contain each of $L=22$ function values with probability $1 / 2^{L}+1 / 2^{d / 2}$ for $L<0$ (d)
5) Show that each quantum protocol with communication d and correctness $2^{-o(L)}$ induces better rectangles

A)

\lrcorner Rectangle in $\{0,1\}^{n / £\{0,1\}^{2} \mathrm{~ns}}$
What is probability of $f\left(x_{i j} y_{i}\right)=c_{i j}$ for all i, j and some fixed $c_{i j}$?

Product of conditional probabilities that $f\left(x_{i v} y_{j}\right)=c_{i j}$ given previous $f\left(x_{u}, y_{v}\right)=c_{i v i}$.

A)

Current input pair? x_{i}, y_{j}
Conditions not involving x_{i} or y_{j}, white
Conditions involving x_{i} or y_{j}, red

A)

\rightarrow Fix all x_{w}, y_{v} other than $x_{i j} y_{j}$
\lrcorner Obtain rectangle R in $\{0,1\} \in\{0,1\}$
Case 1 : R is smaller than $1 / 2^{d}$
All such rectangles can have combined size $1 / 2^{d}$ at most
(in uniform distribution on $\{0,1\}^{4} \mathcal{E}\{0,1\}^{m}$)

A)

\lrcorner Other case: R is "large"
Further conditions: $f\left(x_{i}, y_{v}\right)=c_{i v}$ (row conditions)
$\lrcorner f\left(x_{u,}, y_{j}\right)=c_{u j}$ (column condlitions)
\lrcorner Lead to <2 disjoint subrectangles

- Each contains $1 / 2 \S 1 / 2^{\text {d }}$ zeroes/ones
- Overall R contains $1 / 2 \S 2^{L} / 2^{\mathrm{d}}$ zeroes/ones

A) fin.

- Hence

Prob $\left(f\left(x_{i j} y_{j}\right)=c_{i j}\right)<1 / 2+2^{L} / 2^{d}<1 / 2+2^{d / 2}$ for all conditions
$\lrcorner \operatorname{Prob}\left(f\left(x_{i j} y_{j}\right)=c_{i j}\right.$ for all $\left.i, j\right)$
$<\left(1 / 2+1 / 2^{\mathrm{d} / 2}\right)^{L}$
$<1 / 2^{L}+2 / 2^{\mathrm{d} / 2}$

B)

\lrcorner Given is a quantum protocol with L outputs, communication C and success probability $1 / 2^{L}+$ p
\lrcorner Find a rectangle that contains inputs with $f\left(x_{i}, y_{j}\right)=c_{i j}$ in proportion $1 / 2^{L}+p / 2^{C}$
\lrcorner Proof by decomposing protocols into weighted rectangles

Disjointness

Disjointness upper bound

$\operatorname{DISJ}(x, y)=1$ iff $\sum_{i=1, n, n} x_{i}$ AE $y_{i}>0$

$$
\lrcorner Q_{S}\left(\text { DISJ }_{1 / j}\right)<\tilde{O}\left(1 / n^{1 / 2} / S^{1 / 2 / 2}\right)
$$

$$
\mathrm{Q}_{s}\left(\mathrm{DISS}_{1, n}\right)<\tilde{O}\left(\mathrm{n}^{2.5} / \mathrm{S}^{1 / 2}\right)
$$

$$
\mathrm{Q}_{5}\left(\mathrm{DISJ}_{\mathrm{N}_{1}, 1}\right)<\tilde{\mathrm{O}}\left(\mathrm{n}^{1.5} / \mathrm{S}^{1 / 2 / 2}\right)
$$

Upper bound

Solve DISJ $_{s, 1}$ with communication O$\left((\mathrm{nS})^{1 / 2}\right)$ and space S

- Iterate $I r / S$ times, communication $\tilde{O}\left(\mid r / S q(n S)^{1 / 2}\right)=\tilde{O}\left(\mid r n^{1 / 2} / S^{1 / 2}\right)$

Protocol for DISJ $_{S_{1,1}}$

Alice has sets $x_{1 / 2}, \ldots x_{s}$; Bob has set y
Alice and Bob run a Grover-like protocol on $z=\left[x_{i}\right.$ and y

- Find j $2 \mathrm{z} A$ y
\lrcorner Determine all x_{i} with $j 2 x_{i,}$ call their union z^{\prime}
Set $z=z-z^{\prime}$ and iterate.

Protocol

\lrcorner Problem: cannot store z explicitly (size n)

- Can store array of inputs x_{i} for which output is already computed
Construct superposition $\sum_{j y i j}$ z ljij from oracle and array
- During the protocol use the oracle to implement each Grover iteration

Analysis

Assume that $|z A y|=K_{y}$ in step \mid.

- Then one element in the intersection can be found with $O\left(n^{1 / 2} / K_{y} 1 / 2\right)$ Grover iterations
All elements can be found with O($\left.n^{1 / 2} d^{2} K_{1}^{1 / 2}\right)$ iterations
If $K_{1}<S$ then find all with $(n S)^{1 / 2}$ at most \lrcorner If $K_{1}>S$, then find one element with $n n^{1 / 2} / S^{1 / 2}$ at most, at most S iterations
- Cost always (nS) ${ }^{1 / 2}$

Conclusion

- Have analyzed the effect of a limited number of qubits on the quantum communication complexity
If the discrepancy bound is good, then quantum does not seem to help
\lrcorner Matrix product over GF(2): no speedup by quantum
For Boolean matrix vector product: given upper bound

Open Problems

\lrcorner Lower bounds for DISJ $]_{1,1}$ i,e, for Boolean matrix products (even open classically)
\lrcorner Communication-space tradeoffís for decision problemss

