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OutlineOutline
Two Results:Two Results:

1. The hidden subgroup problem and 
permutation groups (with A. Shalev) – a 
characterisation of distinguishable 
subgroups

2. The lost permutation problem (with J. 
von Korff) – a quantum over classical 
improvement in transmitting 
permutations through a shuffling channel

Some proofs and explanationsSome proofs and explanations



Quantum Fourier Quantum Fourier 
Sampling and the Hidden Sampling and the Hidden 
Subgroup Problem over Subgroup Problem over 

the symmetric groupthe symmetric group



Hidden subgroups of SHidden subgroups of Snn
Quantum Fourier SamplingQuantum Fourier Sampling (QFS) can solve the 

Hidden Subgroup ProblemHidden Subgroup Problem (HSP) for Abelian
groups (Shor’s algorithm, discrete log)

HSP:HSP:

Promise: f is constant on cosets of H and distinct on 
different cosets. 

Task: find a set of generators for H.

            :
h H            ( ) ( )

H G f G R
f x f xh
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Hidden subgroups of SHidden subgroups of Snn

Quantum Fourier Sampling (QFS)Quantum Fourier Sampling (QFS) can solve the 
Hidden Subgroup Problem (HSP) for Abelian
groups (Shor’s algorithm, discrete log)

What about non-Abelian groups?

Symmetric group – would imply solution to the graph 
isomorphism/automorphism problem.

(Abelian groups have one-dimensional irreducible 
representations.)



Hidden subgroups of SHidden subgroups of Snn
Only few known results on nonOnly few known results on non--Abelian groups:Abelian groups:
Efficient solutions for:Efficient solutions for:
• Dihedral group – information theoretic solution to HSP 

[Ettinger,Hoyer’99], exponential classical postprocessing (or 
subexp algorithm [Kuperberg03])
(dihedral group: irreps have small dimension)



Hidden subgroups of SHidden subgroups of Snn
Only few known results on nonOnly few known results on non--Abelian groups:Abelian groups:
Efficient solutions for:Efficient solutions for:
• Dihedral group – information theoretic solution to HSP 

[Ettinger,Hoyer’99], exponential classical postprocessing 
(improved to subexp [Kuperberg03])
(dihedral group: irreps have small dimension)

• Normal subgroups (gHg-1=H) [Hallgren et al.’00]
• Some semidirect products and wreath products of Abelian 

groups [Roetteler,Beth’98], [Grigni et al.’01], affine groups
[Moore et al.’04]

• Groups with small commutator groups [Ivanyos et al.’01], 
solvable groups of constant exponent
[Friedl et al.’03]…



Hidden subgroups of SHidden subgroups of Snn

All this does not apply to the symmetric group All this does not apply to the symmetric group 
SSnn!!

• Subgroups are far from normal
(lots of conjugate subgroups gHg-1)

• Most Irreps are large (                 ) 
• Only partial explicit knowledge about irreps and 

characters

( )log2 n nθ



CrashCrash--course in representation theorycourse in representation theory

RepresentationRepresentation:                                   GL(d) = d-by-d 
matrices
preserves group structure of G (homomorphism)

IrreducibleIrreducible representation (irrep): does not split into a 
(common) block structure in some basis

: GL(d)Gρ →

1 2 1 2( ) ( ) ( )g g g gρ ρ ρ=o



CrashCrash--course in representation theorycourse in representation theory

RepresentationRepresentation:                                   GL(d) = d-by-d 
matrices
preserves group structure of G (homomorphism)

IrreducibleIrreducible representation (irrep): does not split into a 
(common) block structure in some basis

: GL(d)Gρ →

1 2 1 2( ) ( ) ( )g g g gρ ρ ρ=o

...

...

...
( )gρ ≠

Every representation
splits into irreps.

Character: Character: 
( ) ( )g tr gχ ρ=

1( ) ( )g hghχ χ −=

ρ

ρ dρ

dim ρ=dρ



CrashCrash--course in representation theorycourse in representation theory

Orthogonality relations: Orthogonality relations: 

the vectors                                        are orthonormal 

RepresentationRepresentation: GL(d) = d-by-d 
matrices
preserves group structure of G (homomorphism)

ij
,i,j

1 ( ) ,i,j
G

d gρ
ρ

ρ ρ∑

: GL(d)Gρ →

1 2 1 2( ) ( ) ( )g g g gρ ρ ρ=o dim ρ=dρ



Quantum Fourier SamplingQuantum Fourier Sampling
Quantum Fourier Sampling (QFS) can solve the Hidden Subgroup 

Problem (HSP) for Abelian groups 
(Shor’s algorithm, discrete log)

QFS:QFS:
1) uniform superposition over G

10 0
g G

s g
G ∈

= ∑



QFSQFS
QFS:QFS:
1) uniform superposition over G

2) Apply f, measure (or trace) second register

1( )
g G h H

g f g gH gh
H∈ ∈

→ =∑ ∑

10 0
g G

s g
G ∈

= ∑



QFSQFS
QFS:QFS:
1) uniform superposition over G
2) Apply f, measure (or trace) second register

3) QFT

ij
,i,j

1 ( ) ,i,j
G

g d gρ
ρ

ρ ρ→ ∑

10 0
g G

s g
G ∈

= ∑

1( )
g G h H

g f g gH gh
H∈ ∈

→ =∑ ∑



QFSQFS
QFS:QFS:
1) uniform superposition over G
2) Apply f, measure (or trace) second register

3) QFT

Note: for Abelian groups dρ=1 and ρ(g)=χ(g)

ij
,i,j

1 ( ) ,i,j
G

g d gρ
ρ

ρ ρ→ ∑

10 0
g G

s g
G ∈

= ∑

1( )
g G h H

g f g gH gh
H∈ ∈
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χ

χ χ→ ∑



QFSQFS
QFS:QFS:
1) uniform superposition over G
2) Apply f, measure (or trace) second register

3) QFT

gives                                                           with random 
g

ij
,i,j

1 ( ) ,i,j
G

g d gρ
ρ

ρ ρ→ ∑
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GH h H

d ghρ
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g G
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QFSQFS
QFS:QFS:
1) uniform superposition over G
2) Apply f, measure (or trace) second register

3) QFT

gives                                             with random g

4) Sample (measure): probability distribution

ij
,i,j

1 ( ) ,i,j
G

g d gρ
ρ

ρ ρ→ ∑
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d ghρ
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QFSQFS
Probability distribution:Probability distribution:
Weak form: sample Weak form: sample ρρ only (average over i,j)only (average over i,j)

Remark: Same distribution for all conjugate subgroups

H’=gHg-1 (cyclic property of trace). 

( )
2

, ,
( ) ( , , ) ( ) ( )

G GgH gH ij H
i j i j h H h H

d d
P P i j gh h P
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QFSQFS
Probability distribution:Probability distribution:
Weak form: sample Weak form: sample ρρ only (average over i,j)only (average over i,j)

Remark: Same distribution for all conjugate subgroups

H’=gHg-1 (cyclic property of trace). 

Strong form: sample Strong form: sample ρρ, i, j in some basis, i, j in some basis

Choice of basis is arbitrary…

( )
2

, ,
( ) ( , , ) ( ) ( )

G GgH gH ij H
i j i j h H h H

d d
P P i j gh h P

H
ρ ρρ ρ ρ χ ρ

∈ ∈

= = = =∑ ∑∑ ∑



Hidden subgroups of SHidden subgroups of Snn
Previous results for QFS of SPrevious results for QFS of Sn n 
(Hallgren,Russel,TaShma’00, Grigni,Schulman, (Hallgren,Russel,TaShma’00, Grigni,Schulman, 
Vazirani, Vazirani ’01) :Vazirani, Vazirani ’01) :

• Strong form: rows provide no additional information 
(the distribution on rows is always uniform) [GSVV’01]



Hidden subgroups of SHidden subgroups of Snn
Previous results for QFS of SPrevious results for QFS of Sn n 
(Hallgren et al.’00, Grigni et al. ’01) :(Hallgren et al.’00, Grigni et al. ’01) :

• Strong form: rows provide no additional information 
(the distribution on rows is always uniform for all G) 
[GSVV’01]
• Strong form with (uniformly) random basis:
columns provide exponentially small extra information for 
Sn [GSVV’01]



Hidden subgroups of SHidden subgroups of Snn
Previous results for QFS of SPrevious results for QFS of Sn n 
(Hallgren et al.’00, Grigni et al. ’01) :(Hallgren et al.’00, Grigni et al. ’01) :

• Strong form: rows provide no additional information 
(the distribution on rows is always uniform) [GSVV’01]
• Strong form with (uniformly) random basis:
columns provide exponentially small extra information 
[GSVV’01]
• Weak form: cannot distinguish involution with n/2 
2-cycles from {e} in time poly(n).



Hidden subgroups of SHidden subgroups of Snn

Definition:Definition: permutation of constant supportpermutation of constant support = permutation in 
which all but a constant number of points are fixed

move fixed



Hidden subgroups of SHidden subgroups of Snn
Results for SResults for Sn n ( joint with Aner Shalev) :( joint with Aner Shalev) :

♠ H can be distinguished from {e} * only if it contains an elementH can be distinguished from {e} * only if it contains an element
of constant support.of constant support.

• If H is of polynomial size (in n) (♠ : iff)
• If H is primitive (building blocks of all H⊆Sn)
• For a family of subgroups of superexponential order
• Given a group theoretic conjecture, ♠ is true for all H

*with either the weak standard method or the strong standard method with random basis

move fixed



Hidden subgroups of SHidden subgroups of Snn

Definition:Definition: permutation of constant supportpermutation of constant support = permutation in 
which all but a constant number of points are fixed

Remark:Remark: There are only poly(n) permutations of constant 
support. They can be enumerated (checked) in polynomial 
time.

move fixed



Hidden subgroups of SHidden subgroups of Snn
Results for SResults for Sn n ( joint with Aner Shalev) :( joint with Aner Shalev) :

♠ H can be distinguished from {e} * only if it contains an elementH can be distinguished from {e} * only if it contains an element
of constant support.of constant support.

• If H is of polynomial size (in n) (♠: iff)
• If H is primitive (building blocks of all H
• For a family of subgroups of superexponential order
• Given a group theoretic conjecture, ♠ is true for all H

Quantum Fourier Sampling* has no advantage over Quantum Fourier Sampling* has no advantage over 
classical classical exhaustive search (check all elements exhaustive search (check all elements 
of constant support)!of constant support)!*with either the weak standard method or the strong standard method with random basis



Hidden subgroups of SHidden subgroups of Snn
Probability distribution from QFS:Probability distribution from QFS:
Weak form: Weak form: 

Total distribution distance between PH and P{e}: 

( )
2
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Hidden subgroups of SHidden subgroups of Snn
Probability distribution from QFS:Probability distribution from QFS:
Weak form: Weak form: 

Total distribution distance between PH and P{e}: 

H and {e} efficiently distinguishable information-
theoretically iff
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Hidden subgroups of SHidden subgroups of Snn

Definition:Definition: Conjugacy class C– set closed under 
conjugation by elements in G 

For SFor Snn:: Conjugacy class of π= permutations with 
the same cycle structure

1{ : }hC ghg g G−= ∀ ∈



Hidden subgroups of SHidden subgroups of Snn

Main tool:Main tool:
Lemma:Lemma: C1,…,Ck – non-identity conjugacy classes of G.

12 11 2

1 1

k k

i i H i i
i i

C H H C D C H C− −−

= =

∩ < < ∩∑ ∑

,

1 ( )
GH

h Hh e
D d hρ ρ

ρ

χ
∈ ≠

= ∑ ∑



Hidden subgroups of SHidden subgroups of Snn
Main tool:Main tool:
Lemma:Lemma: C1,…,Ck – non-identity conjugacy classes of G.

Corollary 1:Corollary 1: Cmin of minimal size intersecting H

12 11 2

1 1

k k

i i H i i
i i

C H H C D C H C− −−

= =

∩ < < ∩∑ ∑

( ) 111 2
min min1HH C D H C− −− < < −

,

1 ( )
GH

h Hh e
D d hρ ρ

ρ

χ
∈ ≠

= ∑ ∑



Hidden subgroups of SHidden subgroups of Snn
Main tool:Main tool:

Corollary 1:Corollary 1: Cmin of minimal size intersecting H

Remark:Remark: g∈Sn has support k. Then

and |H|=poly(n)=nc

⇒ distinguishable iff k=const.

( ) 111 2
min min1HH C D H C− −− < < −

kn
k

g

nn C
ke

   ≤ ≤ ≤      

( ) 1' 2
min1c

Hn H C D−− < − <



Hidden subgroups of SHidden subgroups of Snn
Main tool:Main tool:
Corollary 1:Corollary 1: Cmin of minimal size intersecting H

Remark:Remark: g∈Sn has support k. Then

and |H|=poly(n)=nc

⇒ distinguishable iff k=const.

Corollary 2:Corollary 2: If |H|=poly(n): distinguishable iff H 
contains an element of constant support.

( ) 111 2
min min1HH C D H C− −− < < −

kn
k

g

nn C
ke

   ≤ ≤ ≤      

( ) 1' 2
min1c

Hn H C D−− < − <



Main toolMain tool
Lemma:Lemma: C1,…,Ck – non-identity conjugacy classes

Proof idea of upper bound:Proof idea of upper bound:

,

1 ( )
GH

h Hh e
D d hρ ρ

ρ

χ
∈ ≠
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12 11 2

1 1

k k

i i H i i
i i

C H H C D C H C− −−

= =

∩ < < ∩∑ ∑

, ,
( ) ( )

h H h e h H h e
d h d hρ ρ ρ ρ

ρ ρ

χ χ
∈ ≠ ∈ ≠

≤∑ ∑ ∑ ∑

122 2( ) ( ) h
h

Gd h d h G G CCρ ρ ρ ρ
ρ ρ ρ

χ χ −≤ ≤ =∑ ∑ ∑



Main toolMain tool
Lemma:Lemma: C1,…,Ck – non-identity conjugacy classes

Proof idea of lower bound:Proof idea of lower bound:

12 11 2

1 1

k k

i i H i i
i i

C H H C D C H C− −−

= =

∩ < < ∩∑ ∑

, , ,
( ) ( )

h H h e h H h e h H h e
h h d H dρ ρ ρ ρχ χ

∈ ≠ ∈ ≠ ∈ ≠
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1

,
( )

h H h e
d H hρ ρχ

−

∈ ≠
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2 2

, 1

1 1( )
G G

k

H i i
h H h e i

D h H C C
H Hρ ρ

ρ ρ

χ χ
∈ ≠ =
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( ) ( )ih Cρ ρχ χ= if
ih H C∈ ∩

Generalized orthogonality relations …

,

1 ( )
GH

h Hh e
D d hρ ρ

ρ

χ
∈ ≠

= ∑ ∑



Hidden subgroups of SHidden subgroups of Snn

TheoremTheorem: H<Sn of non-constant support. If for all k≤n
H has at most nk/7 elements of support ≤k then H 
indistinguishable.



Hidden subgroups of SHidden subgroups of Snn
Theorem:Theorem: H<Sn of non-constant support. If for all k≤n

H has at most nk/7 elements of support ≤k then H 
indistinguishable.

Group theoretic conjecture:Group theoretic conjecture: H<Sn of non-constant 
support. For all k≤n H has at most nk/7 elements of 
support ≤k (true for primitive groups, family of 
superexponentially large groups).

Implies:Implies: If H distinguishable     H has constant minimal 
support (♠).

QFS is no stronger than classical exhaustive search 
(only poly many elements of constant degree).



Permutation Permutation 
transmission through a transmission through a 

shuffling channelshuffling channel
oror

the prolific family the prolific family 
problemproblem



The prolificThe prolific--family problemfamily problem
HexaHexa--plets:plets:

Alice Babe Chiquita Dina Emily

…

Faye  



The prolificThe prolific-- family problemfamily problem
HexaHexa--plets:plets:

Alice Babe Chiquita Dina Emily

…

Faye  

? ?



The prolificThe prolific-- family problemfamily problem
HexaHexa--plets:plets:

Alice Babe Chiquita Dina Emily Faye  

color !!!



The prolificThe prolific-- family problemfamily problem
HexaHexa--plets:plets:

Alice Babe Chiquita Dina Emily

…

Faye  

2 colors, n babies: 
Task:Task: restore the original order exactly after random  

shuffling
• best strategy: n/2  green, n/2 red



The prolificThe prolific-- family problemfamily problem
HexaHexa--plets:plets:

Alice
Babe
Chiquita

Dina
Emily
Faye

…

2 colors, n babies: 
Task:Task: restore the original order exactly after random  

shuffling
• best strategy: n/2  in green, n/2 red
• success probability:

( )2
1p
!2

c n
=



The pThe p--f problemf problem

…

k colors (log k bits per item), n items: 
• best strategy: k blocks of size n/k in one color
• success probability:

( )k
1p ( )
!

c k
n

k
=

… …

( )
1p

!n
k

=

n/k n/k n/k

( )
1p

!n
k

=
( )

1p
!n

k
=

…

General problem: encode a permutation optimally agaGeneral problem: encode a permutation optimally aga
shuffling noiseshuffling noise

Need k=n colors to obtain success probability p=1!



The pThe p--f problemf problem

k quantum “colors” states (log k qubits per item), n items:

|  〉 + |  〉 + |  〉 +…

( )k
1p ( )
!

c k
n

k
=

Qubits instead of bits?Qubits instead of bits?



The pThe p--f problemf problem

k quantum “colors” states (log k qubits per item), n items:
|  〉 + |  〉 + |  〉 +…

Results ( joint with Joshua von Korff):Results ( joint with Joshua von Korff):
• quantum success probability: ( )k

1p ( )
!

c k
n

k
=

n n

q
k (k )p ( )

n!
ok −

=

Qubits instead of bits?Qubits instead of bits?

(for                
)   

1
5

k n<



The pThe p--f problemf problem

k quantum “colors” states (log k qubits per item), n items:
|  〉 + |  〉 + |  〉 +…

Results ( joint with Joshua von Korff):Results ( joint with Joshua von Korff):
• quantum success probability: ( )k

1p ( )
!

c k
n

k
=

n n

q
k (k )p ( )

n!
ok −

=

Qubits instead of bits?Qubits instead of bits?

for  
1
5

k n<

Conjecture: true for all k (probably true)

Need               colors to obtain success probability p=1!
(k=n classically)

n
ek ≈

( )
( 1)

2
q

2c

p ( ) 2
p( )

k

k

k n
k k

π
−

→



The pThe p--f problemf problem
2 quantum states :

|     〉 + |    〉
Example: tripletsExample: triplets

Classical Options:
A    B    C p

1/6

½

½

1/6



The pThe p--f problemf problem
2 quantum states :

|     〉 + |    〉
Example: tripletsExample: triplets

Classical Options:
A    B    C p

½

Quantum solution:       (         )

( )
( )

2

2

1                                            
5

2                                                   15
2                                                   15

α α

α α

+

+ + +

+ +

Quantum success probability: p=5/6

3 1α =



The pThe p--f problemf problem
2 quantum states :

|     〉 + |    〉
Example: tripletsExample: triplets

Classical Options:
A    B    C p

½

Quantum solution:       (         )

Quantum success probability: p=5/6

quantum
2p

!

n n
n
−

= ( )classical 2
1p
2!n

=

3 1α =

quantum

classical

p
n

p
→

( )
( )

2

2

1                                            
5

2                                                   15
2                                                   15

α α

α α

+

+ + +

+ +



The pThe p--f problemf problem
Quantum solution:Quantum solution: (         )

chosen such that set of permutations of      
“as orthogonal as possible”

( ) ( )2 21 2 2000 100 010 001 110 101 01115 155
ψ α α α α= + + + + + +

3 1α =

ψ ψ

( ) ( ) ( ) ( )3 { : 1..6} { , 12 , 13 , 23 , 231 ,(312)}iS s i id= = =

|     〉 + |    〉



The pThe p--f problemf problem
Quantum solution:Quantum solution: (         )

chosen such that set of permutations of      
“as orthogonal as possible”

“Ideal” case: orthogonal set

( ) ( )2 21 2 2000 100 010 001 110 101 01115 155
ψ α α α α= + + + + + +

3 1α =

ψ ψ

( ) ( ) ( ) ( )3 { : 1..6} { , 12 , 13 , 23 , 231 ,(312)}iS s i id= = =

i{ : i 1..6}s ψ =

6

i i
i=1

   s sψ ψ
 
 ≅  
 
 

∑
1

1
1

1
1

1
0

0

|     〉 + |    〉



The pThe p--f problemf problem
Quantum solution:Quantum solution: (         )

chosen such that set of permutations of      “as 
orthogonal as possible”

“Ideal” case:                         orthogonal set

However “cover” only 5 dimensions (not 6). 
Why? Irreps of Sn in tensor-representation…

( ) ( )2 21 2 2000 100 010 001 110 101 01115 155
ψ α α α α= + + + + + +

3 1α =

ψ ψ

( ) ( ) ( ) ( )3 { : 1..6} { , 12 , 13 , 23 , 231 ,(312)}iS s i id= = =

i{ : i 1..6}s ψ =

6

i i
i=1

   s sψ ψ
 
 ≅  
 
 

∑
1

1
1

1
1

1
0

0

i j
1
5 ijs sψ ψ δ=

|     〉 + |    〉



Basic facts from representation theoryBasic facts from representation theory
Schur’s lemma:Schur’s lemma:
Let  ρ be an irrep. of dimension d, A ∈ GL(d) s.th.

then A ≅ Id.

A ( ) ( )A      g Gg gρ ρ= ∀ ∈



Basic facts from representation theoryBasic facts from representation theory
Schur’s lemma:Schur’s lemma:
Let  ρ be an irrep. of dimension d, A ∈ GL(d) s.th.

then A ≅ Id.

Application:Application: “group average”

A ( ) ( )A      g Gg gρ ρ= ∀ ∈

g G

1A ( )
G

gρ
∈

= ∑

g G g G

g G g G g G

1 1A ( ) ( ) ( ) ( )
G G

1 1 1( ) ( ) ( ) ( ) ( )A
G G G

g g g gg

g gg g g g

ρ ρ ρ ρ

ρ ρ ρ ρ ρ

∈ ∈

∈ ∈ ∈

= = =

= = =

∑ ∑

∑ ∑ ∑

% % %

% % %



Representation TheoryRepresentation Theory
Sn acts on           by permutation of the basis states
⇒ representation ρ in GL(dn) 
ex: ρ((213))|101〉 = |011〉
splits space into irreducible subspaces Vρ

Note 

k
n⊗C

( ) ( )
n

†

g S

1
n!

s g gψ ρ ψ ψ ρ
∈

= ∑

...

...

...

( ) ( ) n    g Sg s s gψ ψρ ρ= ∀ ∈



Representation TheoryRepresentation Theory
Sn acts on           by permutation of the basis states
⇒ representation ρ in GL(dn) 
ex: ρ((213))|101〉 = |011〉
splits space into irreducible subspaces Vρ

Note 
Assume             . Then               by Schur’s lemma

k
n⊗C

Vρψ ∈

( ) ( )
n

†

g S

1
n!

s g gψ ρ ψ ψ ρ
∈

= ∑

...

...

...

( ) ( ) n    g Sg s s gψ ψρ ρ= ∀ ∈
s Idψ ≅

ψ sψ =
1

1
1

1
1

1



Representation TheoryRepresentation Theory
If             

Then

1 2
...

kρ ρ ρψ ψ ψ ψ= + + + ...

...

...
sψ =

1

1ρ
ψ

2ρ
ψ

kρ
ψ

...

...

...

1
1

1

1
1

1

ck

c2

c1



Representation TheoryRepresentation Theory
If             

Then

ChooseChoose to “cover” to “cover” 
all space?all space?

Problem: multiple equivalent irreps ! 
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Multiplicity of irrep ρ: mρ
Can we “use” multiple copies of same irrep?

Result: Result: 
Th:Th: Can use at most dρ copies of an irrep ρ.
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Ex.: S3
“cover” only 5 dim.
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For                     “most” irreps have multiplicity smaller than their 
dimension. “Loose” only o(kn) part of full space.
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The pThe p--f problemf problem
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Use Young-tableau rules to estimate
, number of irreps of Sn at most
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SummarySummary
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Permutation transmission: Permutation transmission: 
• quantum advantage to transmission of   
permutation through a shuffling channel
• less colors needed quantumly

HSP:HSP:
• identified large class of hidden subgoups of 
Sn that cannot be distinguished from each 
other
• evidence that QFS (with random basis) not 
stronger than classical search for Sn



Open QuestionsOpen Questions
...
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Permutation transmission: Permutation transmission: 
• Prove result for all k (probably true)

(⇒ ≈n/e colors for p = 1)
• find more applications, also for other groups

HSP:HSP:
• Prove group theoretic conjecture
• Prove there is no “good” basis for the strong method
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GG11≈≈GG22??

Let G=G1∪G2 and determine automorphism group

A={A={π∈π∈SS2n 2n : : ππ(G)=G}.(G)=G}.

Check if it splits as H1 × H2  ⊆ Sn × Sn (⇒ G1≈G2).

A is hidden subgroup of Sn of   f: Sn→G
f: π→ π(G)


