$7^{\text {th }}$ Workshop in Quantun Information Processing, Waterloo, Canada, January 16h, 2004

Quenntum symmmetric
group problems

Julia Kempe
UC Berkeley and LRI, Orsay, France joint works with
Aner Shalev (Hebrew University) and Joshua von Korff (UC Berkeley)

Outline

Two Results:

1. The hidden subgroup problem and permutation groups (with A. Shalev) - a characterisation of distinguishable subgroups
2. The lost permutation problem (with J. von Korff) - a quantum over classical improvement in transmitting permutations through a shuffling channel
Some proofs and explanations

Quantum Fourier Sampling and the Hidden Subgroup Problem over the symmetric group

Midden subgroups of S_{n}

Quantum Fourier Sampling (QFS) can solve the Hidden Subgroup Problem (HSP) for Abelian groups (Shor's algorithm, discrete log)

HSP:

$$
\begin{array}{ll}
H<G & f: G \rightarrow R \\
\forall \mathrm{~h} \in \mathrm{H} & f(x)=f(x h)
\end{array}
$$

Promise: f is constant on cosets of H and distinct on different cosets.
Task: find a set of generators for H .

$$
\text { Midden subgroups of } S_{n}
$$

Quantum Fourier Sampling (QFS) can solve the Hidden Subgroup Problem (HSP) for Abelian groups (Shor's algorithm, discrete log)

What about non-Abelian groups?

Symmetric group - would imply solution to the graph isomorphism/automorphism problem.
(Abelian groups have one-dimensional irreducible representations.)

Hidden subgroups of $\mathbf{S}_{\boldsymbol{n}}$

Only few known results on non-Abelian groups: Efficient solutions for:

- Dihedral group - information theoretic solution to HSP [Ettinger,Hoyer'99], exponential classical postprocessing (or subexp algorithm [Kuperberg03])
(dihedral group: irreps have small dimension)

Hidden subgroups of $\mathbf{S}_{\mathbf{n}}$

Only few known results on non-Abelian groups: Efficient solutions for:

- Dihedral group - information theoretic solution to HSP
[Ettinger,Hoyer'99], exponential classical postprocessing (improved to subexp [Kuperberg03])
(dihedral group: irreps have small dimension)
- Normal subgroups ($\mathrm{gHg}^{-1}=\mathrm{H}$) [Hallgren et al.'00]
- Some semidirect products and wreath products of Abelian groups [Roetteler,Beth'98], [Grigni et al.'01], affine groups [Moore et al.'04]
- Groups with small commutator groups [Ivanyos et al.'01], solvable groups of constant exponent
[Friedl et al.'03]...

Hidden subgroups of $\mathbf{S}_{\mathbf{n}}$

All this does not apply to the symmetric group $S_{n}!$

- Subgroups are far from normal
(lots of conjugate subgroups gHg^{-1})
- Most Irreps are large ($\left.\quad 2^{\theta(n \log n)}\right)$
- Only partial explicit knowledge about irreps and characters

Crash-course in representation theory

Representation: $G \rightarrow G(d)$

$$
\mathrm{GL}(\mathrm{~d})=\mathrm{d}-\mathrm{by}-\mathrm{d}
$$

matrices preserves group structure of G (homomorphism)

$$
\rho\left(g_{1} \circ g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right)
$$

Irreducible representation (irrep): does not split into a (common) block structure in some basis

Crash-course in representation theory

Representation: $G \rightarrow G(d)$

$$
\mathrm{GL}(\mathrm{~d})=\mathrm{d}-\mathrm{by}-\mathrm{d}
$$

matrices preserves group structure of G (homomorphism)

$$
\rho\left(g_{1} \circ g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right) \quad \operatorname{dim} \rho=\mathrm{d}_{\rho}
$$

Irreducible representation (irrep): does not split into a (common) block structure in some basis

Every representation splits into irreps.
Character:

$$
\begin{gathered}
\chi(g)=\operatorname{tr} \rho(g) \\
\chi(g)=\chi\left(h g h^{-1}\right)
\end{gathered}
$$

Grash-course in representation theory

Orthogonality relations:
the vectors $\frac{1}{\sqrt{\mid G}} \sum_{\rho, i, \mathrm{j}} \sqrt{d}_{\rho} \rho(g)_{\mathrm{i} j}|\rho, \mathrm{i}, \mathrm{j}\rangle \quad$ are orthonormal

Representation: $\rho: G \rightarrow G(d) \quad G L(d)=d-b y-d$ matrices
preserves $\rho\left(g_{1}^{10} g_{2}\right)=\operatorname{strycture}\left(g_{1}\right) \rho\left(g_{2}\right) G($ homoniprphism $)$

Quantum Fourier Sampling

Quantum Fourier Sampling (QFS) can solve the Hidden Subgroup Problem (HSP) for Abelian groups
(Shor's algorithm, discrete log)

QFS:

1) uniform superposition over G

$$
|s\rangle|0\rangle=\frac{1}{\mid G} \sum_{g \in G}|g\rangle|0\rangle
$$

QFS

QFS:

1) uniform superposition over $G \quad|s\rangle|0\rangle=\frac{1}{\mid G} \sum_{g \in G}|g\rangle|0\rangle$
2) Apply f, measure (or trace) second register

$$
\sum_{g \in G}|g\rangle|f(g)\rangle \rightarrow|g H\rangle=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|g h\rangle
$$

QFS

QFS:

1) uniform superposition over G

$$
|s\rangle|0\rangle=\frac{1}{\mid \mathcal{G}} \sum_{g \in G}|g\rangle|0\rangle
$$

2) Apply f, measure (or trace) second register
3) QFT

$$
\sum_{g \in G}|g\rangle|f(g)\rangle \rightarrow|g H\rangle=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|g h\rangle
$$

$$
|g\rangle \rightarrow \frac{1}{\sqrt{\mid G}} \sum_{\rho, i, j} \sqrt{d_{\rho}} \rho(g)_{\mathrm{i}, \mathrm{j}}|\rho, \mathrm{i}, \mathrm{j}\rangle
$$

QFS

QFS:

1) uniform superposition over G

$$
|s\rangle|0\rangle=\frac{1}{\mid G} \sum_{g \in G}|g\rangle|0\rangle
$$

2) Apply f, measure (or trace) second register
3) QFT

$$
\sum_{g \in G}|g\rangle|f(g)\rangle \rightarrow|g H\rangle=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|g h\rangle
$$

$$
|g\rangle \rightarrow \frac{1}{\sqrt{\mid G}} \sum_{\rho, i, j} \sqrt{d_{\rho}} \rho(g)_{\mathrm{ij}}|\rho, \mathrm{i}, \mathrm{j}\rangle
$$

Note: for Abelian groups $d_{\rho}=1$ and $\rho(g)=\chi(g)$

$$
|g\rangle \rightarrow \frac{1}{\sqrt{\mid G}} \sum_{x} \chi(g)|x\rangle
$$

QFS

QFS:

1) uniform superposition over G

$$
|s\rangle|0\rangle=\frac{1}{\mid G} \sum_{g \in G}|g\rangle|0\rangle
$$

2) Apply f, measure (or trace) second register
3) QFT

$$
\sum_{g \in G}|g\rangle|f(g)\rangle \rightarrow|g H\rangle=\frac{1}{\sqrt{\mid H}} \sum_{n \in H}|g h\rangle
$$

gives

$$
|g\rangle \rightarrow \frac{1}{\sqrt{\mid \phi}} \sum_{p, i, 1} \sigma_{\rho} \rho\left(g_{i, i}\left|\rho_{, i, j}\right\rangle\right.
$$

g

$$
\frac{1}{\sqrt{\mid G H}} \sum_{\rho, i \mathrm{j}} \sqrt{d_{\rho}} \sum_{h \in H} \rho(g h)_{\mathrm{i}, \mathrm{i}}|\rho, \mathrm{i}, \mathrm{j}\rangle
$$

with random

QFS

QFS:

1) uniform superposition over G

$$
|s\rangle|0\rangle=\frac{1}{\mid G} \sum_{g \in G}|g\rangle|0\rangle
$$

2) Apply f, measure (or trace) second register
3) QFT

$$
\sum_{g \in G}|g\rangle|f(g)\rangle \rightarrow|g H\rangle=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|g h\rangle
$$

$$
|g\rangle \rightarrow \frac{1}{\sqrt{\mid G}} \sum_{\rho, i \mathrm{j}} \sqrt{d_{\rho}} \rho(g)_{\mathrm{i} \mid}|\rho, \mathrm{i}, \mathrm{j}\rangle
$$

gives

$$
\frac{1}{\sqrt{|G|}} \sum_{\rho, i, j} \sqrt{d_{\rho}} \sum_{h \in H} \rho(g h)_{\mathrm{i},}|\rho, \mathrm{i}, \mathrm{j}\rangle
$$

with random g
4) Sample (measure): probability distribution

$$
P_{g H}(\rho, i, j)=\frac{d_{\rho}}{|G H|}\left|\sum_{h \in H} \rho(g h)_{i j}\right|^{2}
$$

QFS

Probability distribution:

Weak form: sample ρ only (average over i, j)

$$
P_{g H}(\rho)=\sum_{i, j} P_{\mathcal{H}}(\rho, i, j)=\frac{d_{\rho}}{|\Phi H|} \sum_{i, j} \sum_{n=H}\left(\left.(g h)_{j}\right|^{2}=\frac{d_{\rho}}{\mid G \sum_{n=H}} x(h)=P_{H}(\rho)\right.
$$

Remark: Same distribution for all conjugate subgroups $\mathrm{H}^{\prime}=\mathrm{gHg}^{-1}$ (cyclic property of trace).

QFS

Probability distribution:

Weak form: sample ρ only (average over i, j)

$$
P_{\text {oh }}(\rho)=\sum_{i, j} P_{\alpha H}(\rho, i, j)=\left.\frac{d_{\rho}}{|\Phi H|} \sum_{i, j} \sum_{n=H}(g h)_{j}\right|^{2}=\frac{d_{\rho}}{\mid G} \sum_{n=H} x(h)=P_{H}(\rho)
$$

Remark: Same distribution for all conjugate subgroups $\mathrm{H}^{\prime}=\mathrm{gHg}^{-1}$ (cyclic property of trace).

Strong form: sample $\rho_{,}, \mathrm{i}, \mathrm{j}$ in some basis Choice of basis is arbitrary...

Hidden subgroups of $\mathbf{S}_{\boldsymbol{n}}$

Previous results for QFS of S_{n} (Hallgren, Russel, TaShma'00, Grigni,Schulman, Vazirani, Vazirani '01) :

- Strong form: rows provide no additional information (the distribution on rows is always uniform) [GSVV'01]

Midden subgroups of S_{n}

Previous results for QFS of S_{n}
(Hallgren et al.'00, Grigni et al. '01) :

- Strong form: rows provide no additional information (the distribution on rows is always uniform for all G) [GSVV'01]
- Strong form with (uniformly) random basis: columns provide exponentially small extra information for S_{n} [GSVV'01]

Hidden subgroups of $\mathbf{S}_{\mathbf{n}}$

Previous results for QFS of S_{n}
(Hallgren et al.'00, Grigni et al. '01) :

- Strong form: rows provide no additional information (the distribution on rows is always uniform) [GSVV'01]
- Strong form with (uniformly) random basis: columns provide exponentially small extra information [GSVV'01]
- Weak form: cannot distinguish involution with $\mathrm{n} / 2$

2-cycles from $\{\mathrm{e}\}$ in time poly(n).

Midden subgroups of S_{n}

Definition: permutation of constant support = permutation in which all but a constant number of points are fixed

Midden subgroups of $\mathbf{S}_{\mathbf{n}}$

Results for S_{n} (joint with Aner Shalev) :

- H can be distinguished from $\{e\}$ * only if it contains an element of constant support.
- If H is of polynomial size (in n) (\uparrow : iff)
- If H is primitive (building blocks of all $H \subseteq S_{n}$)
- For a family of subgroups of superexponential order
- Given a group theoretic conjecture, \uparrow is true for all H

[^0]
Hidden subgroups of $\mathbf{S}_{\mathbf{n}}$

Definition: permutation of constant support = permutation in which all but a constant number of points are fixed

Remark: There are only poly(n) permutations of constant support. They can be enumerated (checked) in polynomial time.

$$
\text { Hidden subgroups of } \mathbf{S}_{\mathbf{n}}
$$

Results for S_{n} (joint with Aner Shalev) :

^ H can be distinguished from $\{e\}$ * only if it contains an element of constant support.

- If H is of polynomial size (in n) (n : iff)
- If H is primitive (building blocks of all H
- For a family of subgroups of superexponential order
- Given a group theoretic conjecture, \uparrow is true for all H

Quantum Fourier Sampling* has no advantage over classical exhaustive search (check all elements *wiofieenstamkitupperto) or the strong standard method with random basis

Hidden subgroups of $\mathbf{S}_{\boldsymbol{n}}$ Probability distribution from QFS:

Weak form:

$$
P_{g H}(\rho)=\sum_{i, j} P_{g H}(\rho, i, j)=\left.\frac{d_{\rho}}{|G H|} \sum_{i, j} \sum_{h \in H} \rho(g h)_{i j}\right|^{2}=\frac{d_{\rho}}{\mid G} \sum_{h \in H} \chi(h)=P_{H}(\rho)
$$

Total distribution distance between P_{H} and $\mathrm{P}_{\{\mathrm{e}\}}$:

$$
D_{H}=\frac{1}{\mid G_{\rho}} \sum_{\rho} d_{\mid} \sum_{n+h m e} x_{\rho}(h)
$$

$$
\begin{aligned}
& \text { Hidden sulogroups of } S_{n} \\
& \text { Probability distribution from QFS: }
\end{aligned}
$$

Weak form:

$$
P_{g H}(\rho)=\sum_{i, j} P_{g H}(\rho, i, j)=\left.\frac{d_{\rho}}{|G H|} \sum_{i, j} \sum_{h \in H} \rho(g h)_{i j}\right|^{2}=\frac{d_{\rho}}{\mid G} \sum_{h \in H} \chi(h)=P_{H}(\rho)
$$

Total distribution distance between P_{H} and $\mathrm{P}_{\{e\}}$:

$$
D_{H}=\frac{1}{\mid G} \sum_{\rho} d_{\rho}\left|\sum_{h H H h \neq e} \chi_{\rho}(h)\right|
$$

H and $\{\mathrm{e}\}$ efficiently distinguishable informationtheoretically iff $D_{H} \geq(\log \mid G)^{-c}=n^{-c^{\prime}}$

Midden subgroups of S_{n}

Definition: Conjugacy class C- set closed under conjugation by elements in G

$$
C_{h}=\left\{g h g^{-1}: \forall g \in G\right\}
$$

For S_{n} : Conjugacy class of $\pi=$ permutations with the same cycle structure

Hidden subgroups of S_{n}

Main tool:

$$
\left.D_{1}=\frac{1}{\mid \varphi_{\rho}} \sum_{\rho}^{d} \right\rvert\, \sum_{\mid h n+n_{e}} x_{\rho}(h)
$$

Lemma: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$ - non-identity conjugacy classes of G.

$$
\sum_{i=1}^{1} G \cap H^{2}\left|H^{-1}\right| C^{-1}<D_{1}<\sum_{\sum=1}^{\infty}|G \cap H| C^{-1 / 2}
$$

Hidden subgroups of \mathbf{S}_{n}
 Main tool:
 $$
\left.D_{H}=\frac{1}{\mid G} \sum_{\rho} d_{\rho} \sum_{n \text { Hhne }} \chi_{\rho}(h) \right\rvert\,
$$

Lemma: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$ - non-identity conjugacy classes of G .

$$
\left.\sum_{i=1}^{k} G \cap H^{2}\left|H^{-1}\right| G\right|^{-1}<D_{H}<\left.\sum_{i=1}^{k} G \cap H| | G\right|^{-1 / 2}
$$

Corollary 1: $\mathrm{C}_{\text {min }}$ of minimal size intersecting H

$$
\left.\left|H^{-1}\right| G_{\text {in }}\right|^{-1}<D_{H}<(\mid H-1)\left|C_{\text {nin }}\right|^{-1 / 2}
$$

Midden subgroups of $\mathbf{S}_{\mathbf{n}}$

Main tool:

Corollary 1: $\mathrm{C}_{\text {min }}$ of minimal size intersecting H

$$
\left.\left|H^{-1}\right| C_{\text {nin }}\right|^{-1}<D_{H}<(\mid H-1)\left|C_{\text {nin }}\right|^{-1 / 2}
$$

Remark: $g \in \mathrm{~S}_{\mathrm{n}}$ has support k. Then $\left(\frac{n}{e}\right)^{k} \leq\binom{ n}{k} \leq C_{g} \leq n^{k}$

$$
\begin{gathered}
n^{-c^{\prime}}<(\mid H-1)\left|C_{\text {rin }}\right|^{-1 / 2}<D_{H} \text { and }|H|=\text { poly }(n)=n^{c} \\
\quad \Rightarrow \text { distinguishable iff } \mathrm{k}=\text { const. }
\end{gathered}
$$

Hidden subgroups of $\mathbf{S}_{\mathbf{n}}$

Main tool:
Corollary 1: $\mathrm{C}_{\text {min }}$ of minimal size intersecting H

$$
\left.\left|H^{-1}\right| C_{\text {nin }}\right|^{-1}<D_{H}<(\mid H-1)\left|C_{\text {nin }}\right|^{-1 / 2}
$$

Remark: $\mathrm{g} \in \mathrm{S}_{\mathrm{n}}$ has support k . Then $\left(\frac{n}{e}\right)^{k} \leq\binom{ n}{k} \leq C_{g} \leq \mathrm{n}^{k}$

$$
\begin{aligned}
& n^{-c^{\prime}}<(|H|-1)\left|C_{\text {min }}\right|^{-1 / 2}<D_{H} \text { and }|H|=\text { poly }(\mathrm{n})=\mathrm{n}^{c} \\
& \quad \Rightarrow \text { distinguishable iff } \mathrm{k}=\text { const } .
\end{aligned}
$$

Corollary 2: If $|\mathrm{H}|=$ poly (n) : distinguishable iff H contains an element of constant support.

Main tool

Lemma: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$ - non-identity conjugacy classes

$$
\sum_{i=1}^{n} G \cap H^{2}\left|H^{-1}\right| C^{-1}<D_{1}<\sum_{i=1}^{n} G \cap H \mid G^{-1 / 2}
$$

Proof idea of upper bound:

$$
\begin{gathered}
\sum_{\rho} d_{\rho}\left|\sum_{n \in H, h \neq e} \chi_{\rho}(h)\right| \leq \sum_{\rho} d_{\rho} \sum_{h \in H, h \neq e}\left|\chi_{\rho}(h)\right| \\
\sum_{\rho} d_{\rho}\left|\chi_{\rho}(h)\right| \leq \sqrt{\sum_{\rho} d_{\rho}^{2}} \sqrt{\sum_{\rho} \mid \chi_{\rho}(h)^{2}} \leq \sqrt{\mid G} \sqrt{\left|G /\left|G_{h}\right|\right.}=\left.|G| G_{h}\right|^{-1 / 2}
\end{gathered}
$$

Main tool $D_{1}=\frac{1}{G} \frac{1}{G} \sum_{0} d, \sum_{n=1} x(h)$

Lemma: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$ - non-identity conjugacy classes

$$
\sum_{i=1}^{k}\left|G \cap H^{2}\right| H^{-1}|G|^{-1}<D_{H}<\sum_{i=1}^{k}|G \cap H||G|^{-1 / 2}
$$

Proof idea of lower bound:

$$
\begin{aligned}
& \left|\sum_{h \in H, h \neq e} \chi_{\rho}(h)\right| \leq \sum_{h \in H, h \neq e}\left|\chi_{\rho}(h)\right| \leq \sum_{n \in H, h \neq e} d_{\rho} \leq|H| d_{\rho} \\
& \qquad d_{\rho}>|H|^{-1}\left|\sum_{n \in H, h \neq e} \chi_{\rho}(h)\right| \\
& \chi_{\rho}(h)=\chi_{\rho}(G) \quad \text { if } \quad h \in H \cap C \\
& D_{H}>\frac{1}{\mid G H} \sum_{\rho}\left|\sum_{n \in H H, h \neq e} \chi_{\rho}(h)\right|^{2}=\frac{1}{|G H|} \sum_{\rho}\left|\sum_{i=1}^{k}\right| H \cap C\left|\chi_{\rho}(C)\right|^{2}
\end{aligned}
$$

Generalized orthogonality relations ...

Midden subgroups of S_{n}

Theorem: $\mathrm{H}<\mathrm{S}_{\mathrm{n}}$ of non-constant support. If for all $\mathrm{k} \leq \mathrm{n}$ H has at most $\mathrm{n}^{\mathrm{k} / 7}$ elements of support $\leq \mathrm{k}$ then H indistinguishable.

Midden subgroups of S_{n}

Theorem: $\mathrm{H}<\mathrm{S}_{\mathrm{n}}$ of non-constant support. If for all $\mathrm{k} \leq \mathrm{n}$ H has at most $n^{k / 7}$ elements of support $\leq k$ then H indistinguishable.

Group theoretic conjecture: $\mathrm{H}<\mathrm{S}_{\mathrm{n}}$ of non-constant support. For all $\mathrm{k} \leq \mathrm{nH}$ has at most $\mathrm{n}^{\mathrm{k} / 7}$ elements of support $\leq \mathrm{k}$ (true for primitive groups, family of superexponentially large groups).

Implies: If H distinguishable $\Rightarrow \mathrm{H}$ has constant minimal support (\uparrow).

QFS is no stronger than classical exhaustive search (only poly many elements of constant degree).

Permutation
 transmission through a
 shuffling channel or
 the prolific family problem

The prolific-family problem

Hexa-plets:

The prolific- family problem

Hexa-plets:

The prolific- family problem

 Hexa-plets:

Alice Babe Chiquita Dina Emily Faye

The prolific- family problem

Hexa-plets:

Alice Babe Chiquita Dina Emily Faye
2 colors, n babies:
Task: restore the original order exactly after random shuffling

- best strategy: $\mathrm{n} / 2$ green, $\mathrm{n} / 2$ red

The prolific- family problem

Hexa-plets:

2 colors, n babies:
Task: restore the original order exactly after random shuffling

- best strategy: $\mathrm{n} / 2$ in green, $\mathrm{n} / 2$ red
- success probability:

$$
p_{c}=\frac{1}{(n / 2!)^{2}}
$$

The p-f problem

General problem: encode a permutation optimally age shuffling noise

k colors (log k bits per item), n items:

- best strategy: k blocks of size n / k in one color
- success probability:

$$
p_{c}(k)=\frac{1}{(n / k!)^{k}}
$$

Need $\mathrm{k}=\mathrm{n}$ colors to obtain success probability $\mathrm{p}=1$!

The p-f problem

Qubits instead of bits?

k quantum "colors" states (log k qubits per item), n items:

$$
p\rangle+p\rangle+p\rangle+\ldots
$$

$$
p_{c}(k)=\frac{1}{(n / k!)^{k}}
$$

The p-f problem

Qubits instead of bits?

k quantum "colors" states (log k qubits per item), n items: $p\rangle+p\rangle+p\rangle+\ldots$

Results (joint with Joshua von Korff):

- quantum success probability:

$$
p_{c}(k)=\frac{1}{(n / k!)^{k}}
$$

$$
\mathrm{p}_{\mathrm{q}}(k)=\frac{k^{n}-\mathrm{o}\left(\mathrm{k}^{n}\right)}{\mathrm{n}!} \quad \text { for }^{\text {f }} k<\frac{1}{5} \sqrt{n}
$$

The p-f problem

Qubits instead of bits?

k quantum "colors" states (log k qubits per item), n items:

$$
p\rangle+p\rangle+p\rangle+\ldots
$$

Results (joint with Joshua von Korff): $\quad p_{c}(k)=\frac{1}{(n / k!)^{k}}$
• quantum success probability:

$$
\mathrm{p}_{\mathrm{q}}(k)=\frac{k^{n}-\mathrm{o}\left(k^{n}\right)}{\mathrm{n}!} \text { for } \begin{aligned}
& k<\frac{1}{5} \sqrt{n} \\
& \frac{p_{\mathrm{q}}(k)}{\mathrm{p}_{\mathrm{c}}(k)} \rightarrow \frac{(2 \pi n)^{(k-1) / 2}}{k^{k / 2}}
\end{aligned}
$$

Conjecture: true for all k (probably true)
\Rightarrow Need $k \approx n / \mathrm{e}$ colors to obtain success probability $\mathrm{p}=1$! ($k=n$ classically)

The p-f problem

Example: triplets 2 quantum states :

Classical Options:

The p-f problem

Example: triplets 2 quantum states :

Classical Options:

$$
A \quad B \subset p
$$

Quantum solution:

$$
\begin{aligned}
& 1 / \sqrt{5} \cos ^{\circ}+ \\
& \sqrt{2 / 15}\left(\mid \text { \& }{ }^{\circ}\right.
\end{aligned}
$$

Quantum success probability: $p=5 / 6$

The p-f problem

Example: triplets 2 quantum states :

Classical Options:
A B C P

Quantum solution:

$\left(\alpha^{3}=1\right)$

$$
1 / \sqrt{5} \operatorname{com}^{\circ}+
$$

$\sqrt{2 / 15}\left(\mid\right.$ \& ${ }^{\circ}$
Quantum success probability: $p=5 / 6$

$$
p_{\text {quantum }}=\frac{2^{n}-n}{n!} \quad p_{\text {dasescal }}=\frac{1}{(n / 2!)^{2}} \quad \frac{p_{\text {quatum }}}{p_{\text {daxsica }}} \rightarrow \sqrt{n}
$$

$$
|\psi\rangle=1 / \sqrt{5}|000\rangle+\sqrt{2 / 15}\left(|100\rangle+\alpha|010\rangle+\alpha^{2}|001\rangle\right)+\sqrt{2 / 15}\left(|110\rangle+\alpha^{2}|101\rangle+\alpha|011\rangle\right)
$$

$|\psi\rangle$ chosen such that set of permutations of $|\psi\rangle$ "as orthogonal as possible"

$$
S_{3}=\left\{s_{i}: i=1 . .6\right\}=\{i d,(12),(13),(23),(231),(312)\}
$$

The p-f problem Quantum solution: ($\alpha^{3}=1$)

$$
\left.|\psi\rangle=y_{\sqrt{5}}|000\rangle+\sqrt{2 / 15}\left(|100\rangle+\alpha|010\rangle+\alpha^{2} \mid 001\right)+\sqrt{2 / 15}\left(|110\rangle+\alpha^{2} \mid 101\right)+\alpha \mid 011\right)
$$

$|\psi\rangle$ chosen such that set of permutations of $|\psi\rangle$ "as orthogonal as possible"

$$
S_{3}=\left\{s_{i}: i=1 . .6\right\}=\{i d,(12),(13),(23),(231),(312)\}
$$

"Ideal" case: $\quad\{s,|\psi\rangle: i=1 . .6\} \quad$ orthogonal set

$$
\sum_{i=1}^{6} s_{i}|\psi\rangle\langle\psi| s_{i} \cong\left(\begin{array}{ccccc}
1 & & & & \\
& & & & \\
& & & & \\
& & 1 & & \\
& & & & \\
& & & & 0 \\
& & & 0
\end{array}\right)
$$

The p-f problem

 Quantum solution: $\quad\left(\alpha^{3}=1\right)$$\left.|\psi\rangle=1 / \sqrt{5}|000\rangle+\sqrt{2 / 15}\left(|100\rangle+\alpha|010\rangle+\alpha^{2} \mid 001\right)+\sqrt{2 / 15}\left(|110\rangle+\alpha^{2}|101\rangle+\alpha \mid 011\right)\right)$
$|\psi\rangle$ chosen such that set of permutations of $|\psi\rangle$ "as orthogonal as possible"

$$
S_{3}=\left\{s_{i}: i=1 . .6\right\}=\{i d,(12),(13),(23),(231),(312)\}
$$

"Ideal" case: $\quad\{s,|\psi\rangle: i=1 . .6\} \quad$ orthogonal set

$$
\sum_{i=1}^{6} s_{i}|\psi\rangle\langle\psi| s_{i} \cong\left(\begin{array}{ccccc}
1 & & & & \\
& & & & \\
& & & & \\
& & & & \\
& & 1 & & \\
& & & & 0 \\
& & & 0
\end{array}\right)
$$

However "cover" only 5 dimensions (not 6). $\left\langle S_{\psi} \psi \mid S_{j} \psi\right\rangle=\frac{1}{5} \delta_{j}$ Why? Irreps of S_{n} in tensor-representation...

Basic facts from representation theory

Schur's lemma:

Let ρ be an irrep. of dimension $d, A \in G L(d)$ s.th.

$$
A \rho(g)=\rho(g) \mathrm{A} \quad \forall g \in \mathrm{G}
$$

then $\mathrm{A} \cong \mathrm{I}_{\mathrm{d}}$.

Basic facts from representation theory

Schur's lemma:

Let ρ be an irrep. of dimension $d, A \in G L(d)$ s.th.

$$
\mathrm{A} \rho(g)=\rho(g) \mathrm{A} \quad \forall \mathrm{~g} \in \mathrm{G}
$$

then $\mathrm{A} \cong \mathrm{I}_{\mathrm{d}}$.
Application: "group average" $A=\frac{1}{\mid G} \sum_{g \in G} \rho(g)$

$$
\begin{aligned}
& A \rho\left(g \phi=\frac{1}{\mid G} \sum_{g \in G} \rho(g) \rho(g)=\frac{1}{\mid G} \sum_{g \in G} \rho(g g \phi=\right. \\
& \frac{1}{\mid G} \sum_{g \in G} \rho(g)=\frac{1}{\mid G} \sum_{g \in G} \rho(g g)=\frac{1}{\mid G} \sum_{g \in G} \rho(g) \rho(g)=\rho(g) A
\end{aligned}
$$

Representation Theory

S_{n} acts on $\mathbf{C}_{k}{ }^{\otimes n}$ by permutation of the basis states
\Rightarrow representation ρ in $\mathrm{GL}\left(\mathrm{d}^{\mathrm{n}}\right)$
ex: $\rho((213))|101\rangle=|011\rangle$
splits space into irreducible subspaces V_{ρ}

$$
S_{\psi}=\frac{1}{n!} \sum_{g \in S_{n}} \rho(g)|\psi\rangle\langle\psi| \rho^{\dagger}(g)
$$

Note $\rho(g) s_{\psi}=s_{\psi} \rho(g) \quad \forall \mathrm{g} \in \mathrm{S}_{\mathrm{n}}$

Representation Theory

S_{n} acts on $\mathbf{C}_{k}{ }^{\otimes n}$ by permutation of the basis states
\Rightarrow representation ρ in $\mathrm{GL}\left(\mathrm{d}^{\mathrm{n}}\right)$
ex: $\rho((213))|101\rangle=|011\rangle$
splits space into irreducible subspaces V_{ρ}

$$
s_{\psi}=\frac{1}{n!} \sum_{g \in G_{1}} \rho(g)|\psi\rangle\langle\psi| \rho^{\dagger}(g)
$$

Note $\rho(g) S_{\psi}=S_{\psi} \rho(g) \quad \forall g \in S_{n}$
Assume $|\psi\rangle \in \mathrm{V}_{\rho}$. Then $\mathrm{S}_{\psi} \cong 1 d$ by Schur's lemma

$$
S_{\psi}={ }^{1} \begin{array}{llll}
1 & & \\
& 1 & & \\
& & & \\
& & & \\
& & \\
\hline
\end{array}
$$

Representation Theory

If $\quad|\psi\rangle=\left|\psi_{\rho_{1}}\right\rangle+\left|\psi_{\rho_{2}}\right\rangle+\ldots+\left|\psi_{\rho_{k}}\right\rangle$

Representation Theory

If $\quad|\psi\rangle=\left|\psi_{\rho_{1}}\right\rangle+\left|\psi_{\rho_{2}}\right\rangle+\ldots+\left|\psi_{\rho_{k}}\right\rangle$
Then

Choose $|\psi\rangle=\frac{1}{\kappa}\left(\sqrt{d_{\rho_{1}}}\left|\psi_{\rho_{1}}\right\rangle+\sqrt{d_{\rho_{2}}}\left|\psi_{\rho_{2}}\right\rangle+\ldots+\sqrt{d_{\rho_{k}}}\left|\psi_{\rho_{k}}\right\rangle\right)$ to "cover" all space?
Problem: multiple equivalent irreps !

Representation Theory

Multiplicity of irrep $\rho: \mathrm{m}_{\rho}$
Can we "use" multiple copies of same irrep?

$$
\sum_{\rho} m_{\rho} d_{\rho}=k^{n}
$$

Result:
Th: Can use at most d_{ρ} copies of an irrep ρ.

Representation Theory

Multiplicity of irrep $\rho: \mathrm{m}_{\rho}$
Can we "use" multiple copies of same irrep?

$$
\sum_{\rho} m_{\rho} d_{\rho}=k^{n}
$$

Result:
Th: Can use at most d_{ρ} copies of an irrep ρ.
Ex.: S_{3}

$$
\sum_{i=1}^{6} s_{i}|\psi\rangle\langle\psi| s_{i} \cong\left(\begin{array}{ccccc}
1 & & & & \\
& 1 & & \\
& 1 & & \\
& & 1 & \\
& & & 0 & \\
& & & \\
& & \\
\hline
\end{array}\right.
$$

Representation Theory

Multiplicity of irrep $\rho: \mathrm{m}_{\rho}$
Can we "use" multiple copies of same irrep?

$$
\sum_{\rho} m_{\rho} d_{\rho}=k^{n}
$$

Result:

Th: Can use at most d_{ρ} copies of an irrep ρ.
$\operatorname{maxrank}\left(s_{\psi}\right)=\sum_{\rho} \min \left(m_{\rho}, d_{\rho}\right) d_{\rho}$
For $k \leq \frac{1}{5} \sqrt{n}$ "most" irreps have multiplicity smaller than their dimension. "Loose" only $o\left(k^{\text {¹ }}\right)$ part of full space.

The p-f problem

Use Young-tableau rules to estimate

 $m_{\max } \leq n^{k^{2}}$, number of irreps of S_{n} at most $\binom{n}{k}$$$
\sum_{\rho} m_{\rho} d_{\rho}=k^{n}
$$

$\operatorname{maxrank}\left(s_{\psi}\right)=\sum_{\rho} \min \left(m_{\rho}, d_{\rho}\right) d_{\rho}$
$\geq k^{n}-\sum_{\rho: m_{\rho}>d_{\rho}}\left(m_{\rho}-d_{\rho}\right) d_{\rho} \geq k^{n}-\sum_{\rho: m_{\rho}>d_{\rho}} m_{\rho} m_{\rho} \geq k^{n}-\binom{n}{k} n^{2 k^{2}}$

$$
=k^{n}-o\left(k^{n}\right) \quad k<\frac{1-\varepsilon}{4} \sqrt{n}
$$

Summary

Permutation transmission:

- quantum advantage to transmission of permutation through a shuffling channel - less colors needed quantumly

HSP:

- identified large class of hidden subgoups of S_{n} that cannot be distinguished from each other
- evidence that QFS (with random basis) not stronger than classical search for S_{n}

Open Questions

Permutation transmission:

- Prove result for all k (probably true)
($\Rightarrow \approx \mathrm{n}$ /e colors for $\mathrm{p}=1$)
- find more applications, also for other groups

HSP:

- Prove group theoretic conjecture
- Prove there is no "good" basis for the strong method

Open Questions

Permutation transmission:

- Prove result for all k (probably true)

$$
(\Rightarrow \approx \mathrm{n} / \mathrm{e} \text { colors for } \mathrm{p}=1)
$$

- find more applications, also for other groups

HSP:

- Prove group theoretic conjecture
- Prove there is no "good" basis for the strong method

STOP!!!

Graph Isomorphism

G_{2}

$G_{1} \approx G_{2}$?

Let $G=G_{1} \cup G_{2}$ and determine automorphism group

$$
\mathrm{A}=\left\{\pi \in \mathrm{S}_{2 n}: \pi(\mathrm{G})=\mathrm{G}\right\} .
$$

Check if it splits as $H_{1} \times H_{2} \subseteq S_{n} \times S_{n}\left(\Rightarrow G_{1} \approx G_{2}\right)$.
A is hidden subgroup of S_{n} of $f: S_{n} \rightarrow G$

$$
\mathrm{f}: \pi \rightarrow \pi(\mathrm{G})
$$

[^0]: *with either the weak standard method or the strong standard method with random basis

