# Consequences and Limits of Nonlocal Strategies

Richard Cleve (Calgary)

joint work with: Peter Høyer (Calgary) Benjamin Toner (Caltech) John Watrous (Calgary)

QIP 2004, Waterloo, Jan 15, 2004

#### **Bell Nonlocality à la CHSH**



No communication between Alice and Bob during the game

- The Verifier chooses two random bits, *s* and *t*, and sends them to Alice and Bob, respectively
- Alice and Bob return bits *a* and *b*, respectively
- The Verifier *accepts* iff *a* ⊕ *b* = *s* ∧ *t* (Alice and Bob *win* iff Verifier accepts)



For any *classical* strategy, Alice and Bob's success probability is at most 3/4

 $a_0 \oplus b_0 = 0$  $a_0 \oplus b_1 = 0$  $a_1 \oplus b_0 = 0$  $a_1 \oplus b_1 = 1$ 

Winning conditions:  $a_s \oplus b_t = s \wedge t$ 

#### **CHSH Game**

There is a *quantum* strategy that succeeds with probability  $\cos^2(\pi/8) \approx 0.853$ 

- Alice and Bob start with entanglement  $|\phi\rangle = |00\rangle |11\rangle$
- If Alice applies rotation  $\theta_A$  and Bob applies rotation  $\theta_B$ :  $\cos(\theta_A - \theta_B) (|00\rangle - |11\rangle) + \sin(\theta_A - \theta_B) (|01\rangle + |10\rangle)$
- Alice and Bob can organize their rotations so that  $\theta_A \theta_B$  takes on the following values for input *st* :





#### **CHSH Game**

**Tsirelson (1980):** For *any* quantum strategy, the success probability is at most  $\cos^2(\pi/8)$ 

#### **Nonlocality Game Framework**



- A *nonlocality game* G consists of four sets A, B, S, T, a probability distribution  $\pi$  on  $S \times T$ , and a predicate  $V: A \times B \times S \times T \rightarrow \{0,1\}$
- Verifier chooses (s,t) ∈ S × T according to π and, after receiving (a,b), accepts iff V(a,b,s,t) = 1
- The *classical value* of G, denoted as  $\omega_c(G)$ , is the maximum acceptance probability, over all classical strategies of Alice and Bob

# Quantum Strategies



- The *quantum value* of *G*, denoted as  $\omega_q(G)$ , is the maximum acceptance probability of quantum strategies
- An upper bound on  $\omega_c(G)$  is a **Bell inequality**
- A quantum strategy with success probability greater than  $\omega_c(G)$  is a **Bell inequality violation**
- An upper bound on  $\omega_q(G)$  is a *Tsirelson inequality*

# Kochen-Specker Game

Based on the

**Kochen-Specker Theorem** (1967): there exists a finite set of vectors  $v_1, v_2, ..., v_n$  in  $\mathbb{R}^3$  that *cannot* be assigned labels from  $\{0,1\}$  simultaneously satisfying:

- For any two orthogonal vectors, they are not both labeled 1
- For any three mutually orthogonal vectors, at least one of them is labeled 1



## Kochen-Specker Game

• The Verifier sends Alice a triple of vectors  $s = (v_i, v_j, v_k)$  and Bob one vector  $t = v_m$  from that triple



- Alice returns a, a valid labeling for  $(v_i, v_j, v_k)$ , and Bob returns b, a label for  $v_m$
- The verifier accepts iff the labels are consistent
- By the Kochen-Specker Theorem,  $\omega_c(G) < 1$
- There is a perfect quantum strategy using entanglement  $|\psi\rangle = |00\rangle + |11\rangle + |22\rangle$ , therefore  $\omega_q(G) = 1$

## Our Goal

- Investigate general relationships between  $\omega_q(G)$  and  $\omega_c(G)$  for various nonlocality games
- Motivation #1: broaden understanding of what entanglement can and cannot do
- Motivation #2: determine the expressive power of *multi-prover interactive proof systems* with entangled provers

# **Computational Proof Systems**

**General question:** what is the computational cost of the process of being *convinced* of something?

- Consider an instance of 3SAT:  $f(x_1,...,x_n) = (x_1 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor x_3 \lor \overline{x}_5) \land \Lambda \land (\overline{x}_1 \lor x_5 \lor \overline{x}_n)$
- Its satisfiability is easy to *verify*—if one is supplied with, say, a satisfying assignment for it
- NP denotes the class of languages L whose positive instances have such "witnesses" that can be verified in polynomial-time

# **Interactive Proof Systems**

If one can carry out a "dialog" with a prover then the expressive power increases from NP to PSPACE



- The Verifier must be efficient (polynomial-time), but the Prover is computationally unbounded
- Soundness: if x ∉ L, no Prover causes the Verifier to accept (small error probability is okay)
- **Completeness:** if  $x \in L$ , there exists a Prover that causes the Verifier to accept (small error is okay)

(Lund, Fortnow, Karloff, Nisan 1990; Shamir 1990)

#### **Two Provers**

With *two* provers, who cannot communicate with each other, the expressive power increases to NEXP (nondeterministic exponential-time)



- Again, the Verifier must be efficient (polynomial-time), and the Provers are computationally unbounded
- The NEXP result assumes the Provers are *classical*
- With *quantum* strategies, Provers can sometimes "cheat" (Babai, Fortnow, Lund, 1991)

#### **Cheating a Protocol for 3SAT**

Instance:  $(x_1 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor x_3 \lor \overline{x}_5) \land (\overline{x}_1 \lor x_5 \lor \overline{x}_n)$ 

- The Verifier randomly chooses a clause and a variable from that clause, and then sends the clause to Alice and the variable to Bob
- 2. Alice returns a valid truth assignment for the clause, and Bob must return a consistent value for the variable

E.g., for the above instance, the Verifier might send Alice " $(\overline{X}_2 \lor X_3 \lor \overline{X}_5)$ " and send Bob " $X_5$ "

... and a valid response is Alice sends 1, 0, 0 (values for  $X_2$ ,  $X_3$ ,  $X_5$  respectively), and Bob sends 0 (value for  $X_5$ )

# **Cheating a Protocol for 3SAT**

For an instance of the Kochen-Specker Theorem, the orthogonality conditions can be expressed by the formula  $f(x_1,...,x_n) = \left[\bigwedge_{v_i \perp v_i} (\overline{x}_i \vee \overline{x}_j)\right] \wedge \left[\bigwedge_{v_i \perp v_i \perp v_k} (x_i \vee x_j \vee x_k)\right]$ 



- By the Kochen-Specker Theorem, this formula is unsatisfiable—therefore, for classical Provers, the Verifier accepts with probability *less than one*
- But, using the quantum strategy for the KS game, the Provers can cause the Verifier to *always* accept

## Quantum vs. Classical MIP

- MIP: class of languages accepted by *classical* two-prover interactive proof systems
- MIP\*: class of languages accepted by *quantum* two-prover interactive proof systems
- **Theorem** (Fortnow, Rompel, Sipser, 1988): MIP  $\subseteq$  NEXP
- Theorem (Babai, Fortnow, Lund, 1991): MIP ⊇ NEXP And this holds for one-round proof systems (Feige, Lovász)
- **Open questions:** is MIP\*  $\supseteq$  NEXP? is MIP\*  $\subseteq$  NEXP?
- Note: one-round quantum two-prover interactive proof systems correspond to nonlocality games ...

#### **XOR Games**

- An **XOR game** is a nonlocality game where:
  - Alice and Bob's messages, a and b, are bits
  - The Verifier's decision is a function of *s*, *t*,  $a \oplus b$
- **Example:** the CHSH game is an XOR game

• **Theorem 1:** for any XOR game, if  $\omega_c(G) \le 1 - \varepsilon$  then  $\omega_q(G) \le 1 - c\varepsilon^2$ , where  $c \approx \pi^2/4$ 

• Note: there exist classical XOR two-prover MIPs for NEXP

# **Proof of Theorem 1 (Part 1)**

Makes use of

**Theorem** (Tsirelson, 1987): quantum strategies for XOR games can be characterized by sets of vectors  $\{x_s : s \in S\}$  and  $\{y_t : t \in T\}$  in  $\mathbb{R}^n$  such that, on input  $(s,t) \in S \times T$ ,

 $\Pr[a \oplus b = 1] = (1 - \mathbf{x}_s \cdot \mathbf{y}_t)/2$ 

E.g., vectors in  $\mathbf{R}^2$  for the CHSH game:

**Aside:** optimal strategies can be found by semidefinite programming



# **Proof of Theorem 1 (Part 2)**

**Contrapositive:**  $\omega_q(G) \ge 1 - c\epsilon^2$  implies  $\omega_c(G) \ge 1 - \epsilon$ 

For a quantum strategy, we have  $\{x_s : s \in S\}$ ,  $\{y_t : t \in T\}$ 

#### **Classical strategy:**

- Alice and Bob share a random vector  $\lambda \in \mathbf{R}^n$
- On input *s*, Alice outputs 0 if  $x_s \cdot \lambda \ge 0$ and 1 otherwise
- On input *t*, Bob outputs 0 if  $y_t \cdot \lambda \ge 0$ and 1 otherwise



## **Proof of Theorem 1 (Part 3)**

Classical protocol:

 $\Pr[a \oplus b = 1] = \theta/\pi$ 

- Quantum protocol:  $Pr[a \oplus b = 1] = (1 - \cos(\theta))/2$
- It follows that the quantum and classical success probabilities,  $p_q$  and  $p_c$ , are related by  $p_q \le \sin^2(\pi p_c/2)$  if  $p_c \ge 0.742$



$$\cos(\theta) = \mathbf{x}_{s} \cdot \mathbf{y}_{t}$$

#### **Conclusion of Theorem 1**

Upper bound of  $\omega_q(G)$  in terms of  $\omega_c(G)$  for XOR games

Tight bound for Chained Bell Inequality games (Braunstein, Caves, 1990)

For *nondegenerate* XOR games, better bound when  $0.5 \le \omega_c(G) \le 0.61$ 



## **Consequences for MIP\*?**

- For all  $L \in NEXP$ , there is a *classical* two-prover MIP that:
  - is an XOR game
  - has soundness probability  $p_s \approx 0.6875$
  - has completeness probability  $p_c = 0.75$
- $\ensuremath{\textcircled{\otimes}}$  Unfortunately, applying Theorem 1 yields a quantum upper bound on  $p_s$  of 0.7825 (greater than  $p_c$ )
- Possible remedies:
  - better classical  $p_s$  vs.  $p_c$  gap?
  - stronger **specialized** upper bounds for quantum  $p_s$ ?
  - quantum strategy to increase quantum  $p_c$ ?

## **Binary Nonlocality Games**

**Binary:** |A| = |B| = 2 (but not necessarily XOR)

**Theorem 2:** for any binary game *G*, if  $\omega_c(G) \le 1$  then  $\omega_q(G) \le 1$ 

**Note:** no corresponding result if "binary" is relaxed to "ternary-binary": |A| = 3 and |B| = 2

**Example:** the Kochen-Specker game is ternary-binary with  $\omega_c(G) < 1$  and  $\omega_a(G) = 1$ 

# **Bounding Entanglement**

- For XOR games,  $N = \max(|S|, |T|)$  entangled qubits suffice (this can be exponentially large for MIPs)
- For *approximate* simulations, O(log N) qubits suffice (by applying the Johnson-Lindenstrauss Theorem)
- Theorem (Kobayashi, Matsumoto, 2003): if the provers are restricted to a *polynomial number* of entangled qubits then MIP\* ⊆ NEXP
- Corollary: XOR-MIP\*  $\subseteq$  NEXP

## **Open Questions**

- MIP\* versus NEXP?
- What happens with more than two provers?
- Quantum communication between the provers and a quantum Verifier?
- How does "parallel repetition" work for quantum strategies?

