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Bell Nonlocality a la CHSH

SN

No communication between Alice and Bob during the game

The Verifier chooses two random bits, s and ¢, and
sends them to Alice and Bob, respectively

Alice and Bob return bits a and b, respectively

The Verifier acceptsiffa @ b =5 N\ ¢
(Alice and Bob win iff Verifier accepts)



CHSH Game

SN

For any classical strategy, ay ® by=0

Alice and Bob’s success a,®b, =0
robability is at most 3/4

P y a, ®b,=0

Winning conditions: a, ® b,=s A a, @b, =1




CHSH Game
There is a quantum strategy that succeeds
with probability cos?(mt/8) =~ 0.853
« Alice and Bob start with entanglement |¢) = |00) — |11)

* If Alice applies rotation 6, and Bob applies rotation 6&;:
cos(y — 65 ) (I00) — |11)) + sin(6y — 65 ) (|01) + [10))

_ _ e St =11
* Alice and Bob can organize their e
rotations so that ¢, — ¢, takeson / e _SE=01or10
the following values for input s¢: T
St = 00
(Bell, 1964; Clauser, Horne, Shimony, Holt, 1969)




CHSH Game

Tsirelson (1980): For any quantum strategy,
the success probability is at most cos?(mt/8)



Nonlocality Game Framework

O

« A nonlocality game G consists of four sets 4, B, S, T,

a probability distribution T on $ x 7', and a predicate
V:AxBxSxT— {0,1}

- Verifier chooses (s,f) € S x T according to 7t and, after
receiving (a,b), accepts iff V(a,b,s,t) =1

 The classical value of G, denoted as ®_(G), is the
maximum acceptance probability, over all classical
strategies of Alice and Bob



Quantum Strategies

/ entangled qubits \,

The quantum value of G, denoted as ©_(G), is the
maximum acceptance probability of quantum strategies

An upper bound on ®_(G) is a Bell inequality

A quantum strategy with success probability greater
than o (G) is a Bell inequality violation

An upper bound on ® (G) is a Tsirelson inequality



Kochen-Specker Game

Based on the
Kochen-Specker Theorem (1967): there exists a
finite set of vectors v,, v,, ..., v_ in R? that cannot be

-y Vg

assigned labels from {0,1} simultaneously satisfying:

* For any two orthogonal vectors, they are not both

labeled 1
* For any three mutually orthogonal vectors, at least
one of them is labeled 1




Kochen-Specker Game

The Verifier sends Alice a triple of
vectors s = (v;, v;, v;) and Bob one
vector £ = v, from that triple

Alice returns a, a valid labeling for (v;, v;, v;),
and Bob returns b, a label for v,

The verifier accepts iff the labels are consistent

By the Kochen-Specker Theorem, o (G) < 1

There is a perfect quantum strategy using entanglement
y) =00) +[11) +|22), therefore w (G) = 1
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Our Goal

* Investigate general relationships between

»,(G) and o (G) for various nonlocality
games

* Motivation #1: broaden understanding of
what entanglement can and cannot do

* Motivation #2: determine the expressive
power of multi-prover interactive proof
systems with entangled provers
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Computational Proof Systems

General question: what is the computational cost
of the process of being convinced of something?

 Consider an instance of 3SAT:
F(Xpen X )= (X, VXV X, )A (X, v Xy v X )AA A (X V X v X))

* Its satisfiability is easy to verify—if one is supplied with,
say, a satisfying assignment for it

« NP denotes the class of languages L whose positive
iInstances have such “witnesses” that can be verified in
polynomial-time
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Interactive Proof Systems

If one can carry out a “dialog” with a prover then the
expressive power increases from NP to PSPACE

isx € L?

questions -
) responses

« The Verifier must be efficient (polynomial-time), but
the Prover is computationally unbounded

« Soundness: if x ¢ L, no Prover causes the Verifier
to accept (small error probability is okay)

« Completeness: if x € L, there exists a Prover that
causes the Verifier to accept (small error is okay)

(Lund, Fortnow, Karloff, Nisan 1990; Shamir 1990) 12



Two Provers

With two provers, who cannot communicate with each other,
the expressive power increases to NEXP (nondeterministic
exponential-time)

* Again, the Verifier must be efficient (polynomial-time),
and the Provers are computationally unbounded

« The NEXP result assumes the Provers are classical

« With quantum strategies, Provers can sometimes “cheat”
(Babai, Fortnow, Lund, 1991) 13



Cheating a Protocol for 3SAT

Instance: (X, v X, v X, )A (X, v X, v X )A (X, v X v X))
1. The Verifier randomly chooses a clause and a variable

from that clause, and then sends the clause to Alice
and the variable to Bob

2. Alice returns a valid truth assignment for the clause,
and Bob must return a consistent value for the variable

E.g., for the above instance, the Verifier might send Alice
“(X, Vv X5 Vv X:)” and send Bob “X.’

... and a valid response is Alice sends 1, 0, O (values for
X,, X3, X5 respectively), and Bob sends O (value for X; )
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For an instance of the Kochen-Specker
Theorem, the orthogonality conditions
can be expressed by the formula

f(X;peen X)) = {/L}(X, vXj)}/\LL{_\ (X,. Vv X; vXk)}

I~ Lvy

* By the Kochen-Specker Theorem, this formula is
unsatisfiable—therefore, for classical Provers, the
Verifier accepts with probability less than one

« But, using the quantum strategy for the KS game, the
Provers can cause the Verifier to always accept

15



Quantum vs. Classical MIP

MIP: class of languages accepted by classical two-prover
interactive proof systems

MIP*: class of languages accepted by quantum two-prover
iInteractive proof systems

Theorem (Fortnow, Rompel, Sipser, 1988): MIP — NEXP

Theorem (Babai, Fortnow, Lund, 1991): MIP o> NEXP
And this holds for one-round proof systems (Feige, Lovasz)

Open questions: is MIP* > NEXP? is MIP* < NEXP?

Note: one-round quantum two-prover interactive proof
systems correspond to nonlocality games ...
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XOR Games

An XOR game is a nonlocality game where:
— Alice and Bob’s messages, a and b, are bits
— The Verifier's decision is a function of s, ¢, a®b

Example: the CHSH game is an XOR game

Theorem 1: for any XOR game, if ® .(G) < 1 — € then
®,(G) < 1 - ce?, where ¢ ~ n°/4

Note: there exist classical XOR two-prover MIPs for NEXP

17



Proof of Theorem 1 (Part 1)

Makes use of

Theorem (Tsirelson, 1987): quantum strategies for XOR
games can be characterized by sets of vectors {x, : s € S}
and {y,:t € T} in R"” such that, on input (s,f) € SxT,

Prla®@b=1]=(1—-x,-y,)/2 x|

E.g., vectors in R? for the CHSH game:

Aside: optimal strategies can be S
found by semidefinite programming
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Proof of Theorem 1 (Part 2)

Contrapositive: o (G) > 1 — ce? implies © (G) > | - ¢

For a quantum strategy, we have {x . :s € S}, {y,:t € T}

Classical strategy:

 Alice and Bob share a random vector
A e R”

* Oninput s, Alice outputs O ifx - 4> 0
and 1 otherwise

* Oninput ¢, Bob outputs 0 if y,- £ =0
and | otherwise
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Proof of Theorem 1 (Part 3)

« Classical protocol:

rla @b 1=0 1\

* Quantum protocol: PRI
Prla®b=1]=(l-cos®)2
COS 6) — xS : yt

« |t follows that the quantum and
classical success probabilities,

pgandp,., are related by
p,<sin*(n p /2) ifp.>0.742
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Conclusion of Theorem 1

Upper bound of ® (G) in

terms of ®_(G) for XOR
games

Tight bound for Chained
Bell Inequality games
(Braunstein, Caves, 1990)

For nondegenerate XOR
games, better bound when

0.5 <0 (G)<0.61

0

0.5 0.61 0.74
®(G)

1

0.5
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Consequences for MIP*?

« For all LeNEXP, there is a classical two-prover MIP that:
— is an XOR game
— has soundness probability p, = 0.6875
— has completeness probability p. = 0.75

* & Unfortunately, applying Theorem 1 yields a quantum
upper bound on p_ of 0.7825 (greater than p)

* Possible remedies:
— better classical p, vs. p_. gap?
— stronger specialized upper bounds for quantum p_?

— quantum strategy to increase quantum p_?
22



Binary Nonlocality Games

Binary: |4| =|B| =2 (but not necessarily XOR)

Theorem 2: for any binary game G,
if 0 (G) <1then® (G) <1

Note: no corresponding result if “binary” is
relaxed to “ternary-binary™. |[A| =3 and |B| =2

Example: the Kochen-Specker game is
ternary-binary with ® (G) < 1 and o (G) = 1
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Bounding Entanglement

For XOR games, N = max(|$],|7]) entangled qubits
suffice (this can be exponentially large for MIPs)

For approximate simulations, O(log N) qubits suffice
(by applying the Johnson-Lindenstrauss Theorem)

Theorem (Kobayashi, Matsumoto, 2003): if the
provers are restricted to a polynomial number of
entangled qubits then MIP* — NEXP

Corollary: XOR-MIP* < NEXP
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Open Questions

MIP* versus NEXP?
What happens with more than two provers?

Quantum communication between the provers
and a quantum Verifier?

How does “parallel repetition” work for quantum
strategies?
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