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Bell Bell NonlocalityNonlocality àà llaa CHSH CHSH 

• The Verifier chooses two random bits, s and t, and 
sends them to Alice and Bob, respectively

• Alice and Bob return bits a and b, respectively

• The Verifier accepts iff a ⊕ b = s Λ t                      
(Alice and Bob win iff Verifier accepts) 

Alice Bob

Verifier

s t

a b

No communication between Alice and Bob during the game
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CHSH GameCHSH Game
Alice Bob

Verifier

s t

a b

For any classical strategy,  
Alice and Bob’s success 
probability is at most 3/4

Winning conditions: as ⊕ bt = s Λ t a1 ⊕ b1 = 1

a1 ⊕ b0 = 0
a0 ⊕ b1 = 0
a0 ⊕ b0 = 0
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CHSH GameCHSH Game

• Alice and Bob start with entanglement |φ〉 = |00〉 – |11〉

• If Alice applies rotation θA and Bob applies rotation θB:  
cos(θA – θB ) (|00〉 – |11〉) + sin(θA – θB ) (|01〉 + |10〉)

• Alice and Bob can organize their                          
rotations so that θA – θB takes on                                  
the following values for input st :

There is a quantum strategy that succeeds 
with probability cos2(π/8) ≈ 0.853

st = 01 or 10

π/8

3π/8

-π/8

st = 11

st = 00

(Bell, 1964; Clauser, Horne, Shimony, Holt, 1969)
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CHSH GameCHSH Game

Tsirelson (1980): For any quantum strategy, 
the success probability is at most cos2(π/8)
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NonlocalityNonlocality Game FrameworkGame Framework

• A nonlocality game G consists of four sets A, B, S, T, 
a probability distribution π on S × T , and a predicate   
V : A × B × S × T → {0,1}

• Verifier chooses (s,t) ∈ S × T according to π and, after 
receiving (a,b), accepts iff V(a,b,s,t) = 1

• The classical value of G, denoted as ωc(G), is the 
maximum acceptance probability, over all classical 
strategies of Alice and Bob

Alice Bob

Verifier

s t

a b
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Quantum StrategiesQuantum Strategies

• The quantum value of G, denoted as ωq(G), is the 
maximum acceptance probability of quantum strategies

• An upper bound on ωc(G) is a Bell inequality

• A quantum strategy with success probability greater 
than ωc(G) is a Bell inequality violation

• An upper bound on ωq(G) is a Tsirelson inequality

Alice Bob

Verifier

s t

a b

entangled qubits
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KochenKochen--SpeckerSpecker GameGame

10
1

1

1

0

0 1
1

0

0

1

Based on the 
Kochen-Specker Theorem (1967): there exists a 
finite set of vectors v1, v2, …, vn in R3 that cannot be 
assigned labels from {0,1} simultaneously satisfying:
• For any two orthogonal vectors, they are not both 

labeled 1
• For any three mutually orthogonal vectors, at least 

one of them is labeled 1
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KochenKochen--SpeckerSpecker GameGame
• The Verifier sends Alice a triple of                           

vectors s = (vi, vj, vk) and Bob one                           
vector t = vm from that triple

• Alice returns a, a valid labeling for (vi, vj, vk),             
and Bob returns b, a label for vm

• The verifier accepts iff the labels are consistent 

• By the Kochen-Specker Theorem, ωc(G) < 1
• There is a perfect quantum strategy using entanglement       

|ψ〉 = |00〉 + |11〉 + |22〉, therefore ωq(G) = 1
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Our GoalOur Goal

• Investigate general relationships between 
ωq(G) and ωc(G) for various nonlocality
games

• Motivation #1: broaden understanding of 
what entanglement can and cannot do

• Motivation #2: determine the expressive 
power of multi-prover interactive proof 
systems with entangled provers
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Computational Proof SystemsComputational Proof Systems

• Consider an instance of 3SAT:

• Its satisfiability is easy to verify—if one is supplied with, 
say, a satisfying assignment for it

• NP denotes the class of languages L whose positive 
instances have such “witnesses” that can be verified in 
polynomial-time

( ) ( ) ( ) ( )nn xxxxxxxxxxxf ∨∨∧∧∨∨∧∨∨= 515324311 Λ,...,

General question: what is the computational cost 
of the process of being convinced of something?
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Interactive Proof SystemsInteractive Proof Systems

• The Verifier must be efficient (polynomial-time), but 
the Prover is computationally unbounded

• Soundness: if x ∉ L, no Prover causes the Verifier 
to accept (small error probability is okay)

• Completeness: if x ∈ L, there exists a Prover that 
causes the Verifier to accept (small error is okay)

If one can carry out a “dialog” with a prover then the 
expressive power increases from NP to PSPACE

is x ∈ L?

Verifier Prover
questions
responses

(Lund, Fortnow, Karloff, Nisan 1990; Shamir 1990)
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Two Two ProversProvers

• Again, the Verifier must be efficient (polynomial-time), 
and the Provers are computationally unbounded

• The NEXP result assumes the Provers are classical
• With quantum strategies, Provers can sometimes “cheat”

is x ∈ L?
P1: Alice P2: Bob

Verifier

questions

responsesresponses

questions

With two provers, who cannot communicate with each other, 
the expressive power increases to NEXP (nondeterministic 
exponential-time)

(Babai, Fortnow, Lund, 1991)
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Cheating a Protocol for 3SATCheating a Protocol for 3SAT
Instance:
1. The Verifier randomly chooses a clause and a variable 

from that clause, and then sends the clause to Alice 
and the variable to Bob

2. Alice returns a valid truth assignment for the clause, 
and Bob must return a consistent value for the variable 

… and a valid response is Alice sends 1, 0, 0 (values for 
x2, x3, x5 respectively), and Bob sends 0 (value for x5 )

E.g., for the above instance, the Verifier might send Alice     
“ ” and send Bob “ ”                                             

( ) ( ) ( )nxxxxxxxxx ∨∨∧∨∨∧∨∨ 51532431

)( 532 xxx ∨∨ 5x
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Cheating a Protocol for 3SATCheating a Protocol for 3SAT

• By the Kochen-Specker Theorem, this formula is 
unsatisfiable—therefore, for classical Provers, the 
Verifier accepts with probability less than one

• But, using the quantum strategy for the KS game, the 
Provers can cause the Verifier to always accept

( ) ( )
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For an instance of the Kochen-Specker
Theorem, the orthogonality conditions 
can be expressed by the formula
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Quantum vs. Classical MIPQuantum vs. Classical MIP
• MIP: class of languages accepted by classical two-prover

interactive proof systems
• MIP*: class of languages accepted by quantum two-prover

interactive proof systems
• Theorem (Fortnow, Rompel, Sipser, 1988): MIP ⊆ NEXP
• Theorem (Babai, Fortnow, Lund, 1991): MIP ⊇ NEXP   

And this holds for one-round proof systems (Feige, Lovász)
• Open questions: is MIP* ⊇ NEXP? is MIP* ⊆ NEXP?
• Note: one-round quantum two-prover interactive proof 

systems correspond to nonlocality games …
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XOR GamesXOR Games
• An XOR game is a nonlocality game where:

– Alice and Bob’s messages, a and b, are bits
– The Verifier’s decision is a function of s, t, a⊕b

• Example: the CHSH game is an XOR game

• Theorem 1: for any XOR game, if ωc(G) ≤ 1 – ε then
ωq(G) ≤ 1 – cε2, where c ≈ π2/4

• Note: there exist classical XOR two-prover MIPs for NEXP
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Proof of Theorem 1 (Part 1)Proof of Theorem 1 (Part 1)
Makes use of 
Theorem (Tsirelson, 1987): quantum strategies for XOR 
games can be characterized by sets of vectors {xs : s ∈ S}
and {yt : t ∈ T} in Rn such that, on input (s,t) ∈ S×T,              

Pr[a ⊕ b = 1] = (1 – xs ⋅ yt )/2

E.g., vectors in R2 for the CHSH game:

x1

x0

y1

y0

Aside: optimal strategies can be 
found by semidefinite programming
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Proof of Theorem 1 (Part 2)Proof of Theorem 1 (Part 2)

• Alice and Bob share a random vector
λ ∈ Rn

• On input s, Alice outputs 0 if xs ⋅ λ ≥ 0
and 1 otherwise

• On input t, Bob outputs 0 if yt ⋅ λ ≥ 0
and 1 otherwise

Contrapositive: ωq(G) > 1 – cε2 implies ωc(G) > 1 – ε

For a quantum strategy, we have {xs : s ∈ S}, {yt : t ∈ T}
Classical strategy:

yt

λ

xs

0
1
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Proof of Theorem 1 (Part 3)Proof of Theorem 1 (Part 3)
• Classical protocol:

Pr[a ⊕ b = 1] = θ/π

• Quantum protocol:
Pr[a ⊕ b = 1] = (1– cos(θ))/2

• It follows that the quantum and 
classical success probabilities,  
pq and pc, are related  by           
pq ≤ sin2(π pc /2)  if pc ≥ 0.742

cos(θ) = xs ⋅ yt

θ
θ

xs
yt

1
a ⊕ b =  0

1

0
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Conclusion of Theorem 1Conclusion of Theorem 1

0 10.74

Upper bound of ωq(G) in 
terms of ωc(G) for XOR 
games

Tight bound for Chained 
Bell Inequality games 
(Braunstein, Caves, 1990) 

For nondegenerate XOR 
games, better bound when 
0.5 ≤ ωc(G) < 0.61

ωc(G)

0.5

0

1

0.610.5

. .
.

.. ..........
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Consequences for MIP*?Consequences for MIP*?
• For all L∈NEXP, there is a classical two-prover MIP that:

– is an XOR game
– has soundness probability ps ≈ 0.6875
– has completeness probability pc = 0.75

• Unfortunately, applying Theorem 1 yields a quantum 
upper bound on ps of 0.7825 (greater than pc)

• Possible remedies:
– better classical ps vs. pc gap? 
– stronger specialized upper bounds for quantum ps?
– quantum strategy to increase quantum pc?
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Binary Binary NonlocalityNonlocality GamesGames
 Binary: |A| = |B| = 2 (but not necessarily XOR)

 Theorem 2: for any binary game G,               
if ωc(G) < 1 then ωq(G) < 1

 Note: no corresponding result if “binary” is 
relaxed to “ternary-binary”: |A| = 3 and |B| = 2

 Example: the Kochen-Specker game is 
ternary-binary with ωc(G) < 1 and ωq(G) = 1
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Bounding Entanglement Bounding Entanglement 
• For XOR games, N = max(|S|,|T|) entangled qubits

suffice (this can be exponentially large for MIPs)

• For approximate simulations, O(log N) qubits suffice 
(by applying the Johnson-Lindenstrauss Theorem)

• Theorem (Kobayashi, Matsumoto, 2003): if the  
provers are restricted to a polynomial number of 
entangled qubits then MIP* ⊆ NEXP

• Corollary: XOR-MIP* ⊆ NEXP
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Open QuestionsOpen Questions
• MIP* versus NEXP?

• What happens with more than two provers?

• Quantum communication between the provers
and a quantum Verifier?

• How does “parallel repetition” work for quantum 
strategies?
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