Consequences and Limits of Nonlocal Strategies

Richard Cleve (Calgary)
joint work with:
Peter Høyer (Calgary)
Benjamin Toner (Caltech)
John Watrous (Calgary)

Bell Nonlocality à la CHSH

No communication between Alice and Bob during the game

- The Verifier chooses two random bits, s and t, and sends them to Alice and Bob, respectively
- Alice and Bob return bits a and b, respectively
- The Verifier accepts iff $a \oplus b=s \wedge t$ (Alice and Bob win iff Verifier accepts)

CHSH Game

For any classical strategy, Alice and Bob's success probability is at most $3 / 4$

Winning conditions: $a_{s} \oplus b_{t}=s \wedge t$

$$
\begin{aligned}
& a_{0} \oplus b_{0}=0 \\
& a_{0} \oplus b_{1}=0 \\
& a_{1} \oplus b_{0}=0 \\
& a_{1} \oplus b_{1}=1
\end{aligned}
$$

CHSH Game

There is a quantum strategy that succeeds with probability $\cos ^{2}(\pi / 8) \approx 0.853$

- Alice and Bob start with entanglement $|\phi\rangle=|00\rangle-|11\rangle$
- If Alice applies rotation θ_{A} and Bob applies rotation θ_{B} : $\cos \left(\theta_{\mathrm{A}}-\theta_{\mathrm{B}}\right)(|00\rangle-|11\rangle)+\sin \left(\theta_{\mathrm{A}}-\theta_{\mathrm{B}}\right)(|01\rangle+|10\rangle)$
- Alice and Bob can organize their rotations so that $\theta_{\mathrm{A}}-\theta_{\mathrm{B}}$ takes on the following values for input $s t$:

CHSH Game

Tsirelson (1980): For any quantum strategy, the success probability is at most $\cos ^{2}(\pi / 8)$

Nonlocality Game Framework

- A nonlocality game G consists of four sets A, B, S, T, a probability distribution π on $S \times T$, and a predicate $V: A \times B \times S \times T \rightarrow\{0,1\}$
- Verifier chooses $(s, t) \in S \times T$ according to π and, after receiving (a, b), accepts iff $V(a, b, s, t)=1$
- The classical value of G, denoted as $\omega_{c}(G)$, is the maximum acceptance probability, over all classical strategies of Alice and Bob

Quantum Strategies

- The quantum value of G, denoted as $\omega_{q}(G)$, is the maximum acceptance probability of quantum strategies
- An upper bound on $\omega_{c}(G)$ is a Bell inequality
- A quantum strategy with success probability greater than $\omega_{c}(G)$ is a Bell inequality violation
- An upper bound on $\omega_{q}(G)$ is a Tsirelson inequality

Kochen-Specker Game

Based on the
Kochen-Specker Theorem (1967): there exists a finite set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ in \mathbf{R}^{3} that cannot be assigned labels from $\{0,1\}$ simultaneously satisfying:

- For any two orthogonal vectors, they are not both labeled 1
- For any three mutually orthogonal vectors, at least one of them is labeled 1

Kochen-Specker Game

- The Verifier sends Alice a triple of vectors $s=\left(v_{i}, v_{j}, v_{k}\right)$ and Bob one vector $t=v_{m}$ from that triple

- Alice returns a, a valid labeling for $\left(v_{i}, v_{j}, v_{k}\right)$, and Bob returns b, a label for v_{m}
- The verifier accepts iff the labels are consistent
- By the Kochen-Specker Theorem, $\omega_{c}(G)<1$
- There is a perfect quantum strategy using entanglement $|\psi\rangle=|00\rangle+|11\rangle+|22\rangle$, therefore $\omega_{q}(G)=1$

Our Goal

- Investigate general relationships between $\omega_{q}(G)$ and $\omega_{c}(G)$ for various nonlocality games
- Motivation \#1: broaden understanding of what entanglement can and cannot do
- Motivation \#2: determine the expressive power of multi-prover interactive proof systems with entangled provers

Computational Proof Systems

General question: what is the computational cost of the process of being convinced of something?

- Consider an instance of 3SAT:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{5}\right) \wedge \Lambda \wedge\left(\bar{x}_{1} \vee x_{5} \vee \bar{x}_{n}\right)
$$

- Its satisfiability is easy to verify-if one is supplied with, say, a satisfying assignment for it
- NP denotes the class of languages L whose positive instances have such "witnesses" that can be verified in polynomial-time

Interactive Proof Systems

If one can carry out a "dialog" with a prover then the expressive power increases from NP to PSPACE

$$
\text { is } x \in L ?
$$

- The Verifier must be efficient (polynomial-time), but the Prover is computationally unbounded
- Soundness: if $x \notin L$, no Prover causes the Verifier to accept (small error probability is okay)
- Completeness: if $x \in L$, there exists a Prover that causes the Verifier to accept (small error is okay)

Two Provers

With two provers, who cannot communicate with each other, the expressive power increases to NEXP (nondeterministic exponential-time)

- Again, the Verifier must be efficient (polynomial-time), and the Provers are computationally unbounded
- The NEXP result assumes the Provers are classical
- With quantum strategies, Provers can sometimes "cheat" (Babai, Fortnow, Lund, 1991)

Cheating a Protocol for 3SAT

 Instance: $\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{5}\right) \wedge\left(\bar{x}_{1} \vee x_{5} \vee \bar{x}_{n}\right)$1. The Verifier randomly chooses a clause and a variable from that clause, and then sends the clause to Alice and the variable to Bob
2. Alice returns a valid truth assignment for the clause, and Bob must return a consistent value for the variable
E.g., for the above instance, the Verifier might send Alice " $\left(\bar{X}_{2} \vee X_{3} \vee \bar{X}_{5}\right)$ " and send Bob " $X_{5}^{\prime \prime}$
\ldots and a valid response is Alice sends $1,0,0$ (values for x_{2}, x_{3}, x_{5} respectively), and Bob sends 0 (value for x_{5})

Cheating a Protocol for 3SAT

For an instance of the Kochen-Specker Theorem, the orthogonality conditions can be expressed by the formula

- By the Kochen-Specker Theorem, this formula is unsatisfiable-therefore, for classical Provers, the Verifier accepts with probability less than one
- But, using the quantum strategy for the KS game, the Provers can cause the Verifier to always accept

Quantum vs. Classical MIP

- MIP: class of languages accepted by classical two-prover interactive proof systems
- MIP*: class of languages accepted by quantum two-prover interactive proof systems
- Theorem (Fortnow, Rompel, Sipser, 1988): MIP \subseteq NEXP
- Theorem (Babai, Fortnow, Lund, 1991): MIP \supseteq NEXP And this holds for one-round proof systems (Feige, Lovász)
- Open questions: is MIP* \supseteq NEXP? is MIP* \subseteq NEXP?
- Note: one-round quantum two-prover interactive proof systems correspond to nonlocality games ...

XOR Games

- An XOR game is a nonlocality game where:
- Alice and Bob's messages, a and b, are bits
- The Verifier's decision is a function of $s, t, a \oplus b$
- Example: the CHSH game is an XOR game
- Theorem 1: for any XOR game, if $\omega_{c}(G) \leq 1-\varepsilon$ then
$\omega_{q}(G) \leq 1-\mathrm{c}^{2}$, where $\mathrm{c} \approx \pi^{2} / 4$
- Note: there exist classical XOR two-prover MIPs for NEXP

Proof of Theorem 1 (Part 1)

Makes use of
Theorem (Tsirelson, 1987): quantum strategies for XOR games can be characterized by sets of vectors $\left\{x_{s}: s \in S\right\}$ and $\left\{y_{t}: t \in T\right\}$ in \mathbf{R}^{n} such that, on input $(s, t) \in S \times T$,

$$
\operatorname{Pr}[a \oplus b=1]=\left(1-x_{s} \cdot y_{t}\right) / 2
$$

E.g., vectors in \mathbf{R}^{2} for the CHSH game:

Aside: optimal strategies can be
 found by semidefinite programming

Proof of Theorem 1 (Part 2)

Contrapositive: $\omega_{q}(G)>1-\mathrm{c}^{2}$ implies $\omega_{c}(G)>1-\varepsilon$
For a quantum strategy, we have $\left\{x_{s}: s \in S\right\},\left\{y_{t}: t \in T\right\}$
Classical strategy:

- Alice and Bob share a random vector $\lambda \in \mathbf{R}^{n}$
- On input s, Alice outputs 0 if $x_{s} \cdot \lambda \geq 0$ and 1 otherwise
- On input t, Bob outputs 0 if $y_{t} \cdot \lambda \geq 0$ and 1 otherwise

Proof of Theorem 1 (Part 3)

- Classical protocol:
$\operatorname{Pr}[a \oplus b=1]=\theta / \pi$
- Quantum protocol:
$\operatorname{Pr}[a \oplus b=1]=(1-\cos (\theta)) / 2$
- It follows that the quantum and

$\cos (\theta)=x_{s} \cdot y_{t}$ classical success probabilities, p_{q} and p_{c}, are related by $p_{q} \leq \sin ^{2}\left(\pi p_{c} / 2\right)$ if $p_{c} \geq 0.742$

Conclusion of Theorem 1

Upper bound of $\omega_{q}(G)$ in terms of $\omega_{c}(G)$ for XOR games

Tight bound for Chained Bell Inequality games (Braunstein, Caves, 1990)

For nondegenerate XOR games, better bound when $0.5 \leq \omega_{c}(G)<0.61$

Consequences for MIP*?

- For all $L \in$ NEXP, there is a classical two-prover MIP that:
- is an XOR game
- has soundness probability $p_{s} \approx 0.6875$
- has completeness probability $p_{c}=0.75$
- © Unfortunately, applying Theorem 1 yields a quantum upper bound on p_{s} of 0.7825 (greater than p_{c})
- Possible remedies:
- better classical p_{s} vs. p_{c} gap?
- stronger specialized upper bounds for quantum p_{s} ?
- quantum strategy to increase quantum p_{c} ?

Binary Nonlocality Games

Binary: $|A|=|B|=2$ (but not necessarily XOR)
Theorem 2: for any binary game G,
if $\omega_{c}(G)<1$ then $\omega_{q}(G)<1$
Note: no corresponding result if "binary" is relaxed to "ternary-binary": $|A|=3$ and $|B|=2$

Example: the Kochen-Specker game is ternary-binary with $\omega_{c}(G)<1$ and $\omega_{q}(G)=1$

Bounding Entanglement

- For XOR games, $N=\max (|S|,|T|)$ entangled qubits suffice (this can be exponentially large for MIPs)
- For approximate simulations, $O(\log N)$ qubits suffice (by applying the Johnson-Lindenstrauss Theorem)
- Theorem (Kobayashi, Matsumoto, 2003): if the provers are restricted to a polynomial number of entangled qubits then MIP* \subseteq NEXP
- Corollary: XOR-MIP* \subseteq NEXP

Open Questions

- MIP* versus NEXP?
- What happens with more than two provers?
- Quantum communication between the provers and a quantum Verifier?
- How does "parallel repetition" work for quantum strategies?

