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Abstract

In this paper, I try to cause some good-natured trouble. The issue at stake is when

will we ever stop burdening the taxpayer with conferences and workshops devoted—
explicitly or implicitly—to the quantum foundations? The suspicion is expressed that

no end will be in sight until a means is found to reduce quantum theory to two or
three statements of crisp physical (rather than abstract, axiomatic) significance. In

this regard, no tool appears to be better calibrated for a direct assault than quantum
information theory. Far from being a strained application of the latest fad to a deep-
seated problem, this method holds promise precisely because a large part (but not all)

of the structure of quantum theory has always concerned information. It is just that
the physics community has somehow forgotten this.

1 Imprimatur

im·pri·ma·tur (̂ıḿ pre-mä1ter, -mâ1ter)
1. Official approval or license to print or
publish, especially under conditions of cen-
sorship.

— American Heritage Dictionary

The title of the NATO Advanced Research Workshop that gave birth to this volume was
“Decoherence and its Implications in Quantum Computation and Information Transfer.” It
was a wonderful meeting—the kind most of us lick our lips for year after year, with little
hope of ever tasting. It combined the best of science with the exotic solitude of an island far,
far away. One could not help but have a creative thought shaken loose with each afternoon’s
gusty wind. Indeed, it was a meeting that will make NATO proud. But, as any attendee can
tell you, the most popular pastime—in spite of those windy beaches and dark tans—was an
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Quantum Mechanics as Quantum Information

(and only a little more)

Christopher A. Fuchs

Computing Science Research Center
Bell Labs, Lucent Technologies

Room 2C-420, 600–700 Mountain Ave.
Murray Hill, New Jersey 07974, USA

Abstract

In this paper, I try once again to cause some good-natured trouble. The issue remains, when
will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations?
The suspicion is expressed that no end will be in sight until a means is found to reduce quantum
theory to two or three statements of crisp physical (rather than abstract, axiomatic) significance.
In this regard, no tool appears better calibrated for a direct assault than quantum information
theory. Far from a strained application of the latest fad to a time-honored problem, this method
holds promise precisely because a large part—but not all—of the structure of quantum theory
has always concerned information. It is just that the physics community needs reminding.

This paper, though taking quant-ph/0106166 as its core, corrects one mistake and offers sev-
eral observations beyond the previous version. In particular, I identify one element of quantum
mechanics that I would not label a subjective term in the theory—it is the integer parameter
D traditionally ascribed to a quantum system via its Hilbert-space dimension.

1 Introduction 1

Quantum theory as a weather-sturdy structure has been with us for 75 years now. Yet, there
is a sense in which the struggle for its construction remains. I say this because one can check that
not a year has gone by in the last 30 when there was not a meeting or conference devoted to some

aspect of the quantum foundations. Our meeting in Växjö, “Quantum Theory: Reconsideration of
Foundations,” is only one in a long, dysfunctional line.

But how did this come about? What is the cause of this year-after-year sacrifice to the “great
mystery?” Whatever it is, it cannot be for want of a self-ordained solution: Go to any meeting,

and it is like being in a holy city in great tumult. You will find all the religions with all their priests
pitted in holy war—the Bohmians [3], the Consistent Historians [4], the Transactionalists [5], the

Spontaneous Collapseans [6], the Einselectionists [7], the Contextual Objectivists [8], the outright
Everettics [9, 10], and many more beyond that. They all declare to see the light, the ultimate light.

Each tells us that if we will accept their solution as our savior, then we too will see the light.
1This paper, though substantially longer, should be viewed as a continuation and amendment to Ref. [1]. Details of

the changes can be found in the Appendix to the present paper, Section 11. Substantial further arguments defending
a transition from the “objective Bayesian” stance implicit in Ref. [1] to the “subjective Bayesian” stance implicit
here can be found in Ref. [2].

1

http://arXiv.org/abs/quant-ph/0106166
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Rolf Landauer has once claimed that
" information is physical "

The main thesis of this talk is that
" physics is informational "



1. The speed of light in empty space is
independent of the speed of its source.

2. Physics should appear the same
in all inertial reference frames.

The axioms of Relativity



C.H. Bennett July ’02

I. To each physical system
there corresponds a Hilbert
space    of dimensionality equal
to the system's maximum num-
ber of reliably distinguishablee
states.

1

2. Each direction (ray) in the 
Hilbert space corresponds to a 
possible state of the system.

3. Spontaneous evolution of an
unobserved system is a unitary
transformation on its Hilbert
space.

3

1. A linear vector
space with com-
plex coefficients
and inner product
< φ | ψ >  = Σ  φ    ψ

 2

2.  For polarized 
photons two,  e.g. 
vertical and horizonal 

*

0
1(  ) (  )1

0= = 

  3.  E.g. for photons,
other polarizations

(    )
= = (    )1

1 (    )+1
 -1

i 
 -1(    )i 

1
= = 

4.  Unitary =  Linear and
inner-product preserving.

4

-- more --

ii

Quantum laws



C.H. Bennett July ’02

4. The Hilbert space of a com- 
posite sysem is the tensor 
product of the Hilbert spaces
of its parts.  1

5. Each possible measurement  2
on a system corresponds to a 
resolution of its Hilbert space 
into orthogonal subspaces  { P  },

where   Σ P   = 1.   On state
ψ  the result  j  occurs with 
probability  |P   ψ|   and the 
state after measurement is

2

 j 

 j 

 j 

P  |    >ψ j 

| P  |    >| j ψ

1 . T h u s a  tw o-p ho ton
syst em  can  exist  in  
"p ro d u ct sta t es" su ch  as
              an d    
b u t  a lso in  "en t an gled "
st a te s su ch  as 

2   B elievers in  th e  "m an y
wo rld s in te rp re ta tion " reje ct
t his axio m  as u gly an d  
u n n e cessary.  F o r th e m  
m ea su r em en t  is ju st  a u n it ary
e vo lu tion  p ro d u cin g a n  
e n ta n gle d  st at e o f th e  syst em
an d  m ea su r in g ap p a rat u s.
F o r ot h er s,  m e asu re m en t  
cau se s th e  syst e m  t o  b e h ave
p ro b ab ilistically a n d  fo rget
it s p re -m ea su rem en t  st at e,
u n le ss t h at  st ate  h a p p en s t o
lie  e n tirely with in  on e  o f t h e
su b sp ace s P   . j 

in  wh ich  n e ith e r 
p h o to n  h a s a  d efin ite  
stat e  e ve n  th o u gh  th e  
p a ir to ge th e r d o es



Let there be confidentiality
And he saw that was good



Let there be commitment
But he saw that was bad



He invented Quantum Mechanics !









No scheme can be unconditionally
concealing and binding

Classical Fact:•

Alice cannot change value
of x once committed

Binding:•

Security is guaranteed
no matter what

Unconditional:•

• Concealing:
Bob cannot get information
about x without Alice's help

Properties of Bit Commitments
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The Trouble with Quantum Bit Commitment

Dominic Mayers

Département IRO, Université de Montréal

C.P. 6128, succursale Centre-Ville,Montréal (Québec), Canada H3C 3J7.

(November 1, 2002)

Abstract

In a recent paper, Lo and Chau explain how to break a family of quantum bit

commitment schemes, and they claim that their attack applies to the 1993

protocol of Brassard, Crépeau, Jozsa and Langlois (BCJL). The intuition

behind their attack is correct, and indeed they expose a weakness common

to all proposals of a certain kind, but the BCJL protocol does not fall in this

category. Nevertheless, it is true that the BCJL protocol is insecure, but the

required attack and proof are more subtle. Here we provide the first complete

proof that the BCJL protocol is insecure.

1994 PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c

Typeset using REVTEX
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Département IRO, Université de Montréal
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Is Quantum Bit Commitment Really Possible?

Hoi-Kwong Lo∗ and H. F. Chau†

School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540
(January 15, 2002)

We show that all proposed quantum bit commitment schemes are insecure because the sender,
Alice, can almost always cheat successfully by using an Einstein-Podolsky-Rosen type of attack and
delaying her measurement until she opens her commitment.

PACS Numbers: 89.70.+c, 03.65.Bz, 89.80.+h

Work on quantum cryptography was started by S. J.
Wiesner in a paper written in about 1970, but remained
unpublished until 1983 [1]. Recently, there have been
lots of renewed activities in the subject. The most well-
known application of quantum cryptography is the so-
called quantum key distribution (QKD) [2–4], which is
useful for making communications between two users to-
tally unintelligible to an eavesdropper. QKD takes ad-
vantage of the uncertainty principle of quantum mechan-
ics: Measuring a quantum system in general disturbs it.
Therefore, eavesdropping on a quantum communication
channel will generally leave unavoidable disturbance in
the transmitted signal which can be detected by the legit-
imate users. Besides QKD, other quantum cryptographic
protocols [5] have also been proposed. In particular, it is
generally believed [4] that quantum mechanics can pro-
tect private information while it is being used for public
decision. Suppose Alice has a secret x and Bob a secret
y. In a “two-party secure computation” (TPSC), Alice
and Bob compute a prescribed function f(x, y) in such a
way that nothing about each party’s input is disclosed to
the other, except for what follows logically from one’s pri-
vate input and the function’s output. An example of the
TPSC is the millionaires’ problem: Two persons would
like to know who is richer, but neither wishes the other
to know the exact amount of money he/she has.

In classical cryptography, TPSC can be achieved ei-
ther through trusted intermediaries or by invoking some
unproven computational assumptions such as the hard-
ness of factoring large integers. The great expectation
is that quantum cryptography can get rid of those re-
quirements and achieve the same goal using the laws of
physics alone. At the heart of such optimism has been
the widespread belief that unconditionally secure quan-
tum bit commitment (QBC) schemes exist [6]. Here we
put such optimism into very serious doubt by showing

∗Present Address: BRIMS, Hewlett-Packard Labs, Fil-
ton Road, Stoke Gifford, Bristol BS12 6QZ, UK. e-mail:
hkl@hplb.hpl.hp.com
†Present Address: Department of Physics, University

of Hong Kong, Pokfulam Road, Hong Kong. e-mail:
hfchau@hkusua.hku.hk

that all proposed QBC schemes are insecure: A dishon-
est party can exploit the non-local Einstein-Podolsky-
Rosen (EPR) [18] type correlations in quantum mechan-
ics to cheat successfully. To do so, she generally needs
to maintain the coherence of her share of a quantum sys-
tem by using a quantum computer. We remark that all
proposed QBC schemes contain an invalid implicit as-
sumption that some measurements are performed by the
two participants. This is why this EPR-type of attack
was missed in earlier analysis.

Let us first introduce bit commitment. A bit com-
mitment scheme generally involves two parties, a sender,
Alice and a receiver, Bob. Suppose that Alice has a bit
(b = 0 or 1) in mind, to which she would like to be
committed towards Bob. That is, she wishes to provide
Bob with a piece of evidence that she has already chosen
the bit and that she cannot change it. Meanwhile, Bob
should not be able to tell from that evidence what b is.
At a later time, however, it must be possible for Alice
to open the commitment. In other words, Alice must be
able to show Bob which bit she has committed to and
convince him that this is indeed the genuine bit that she
had in mind when she committed.

A concrete example of an implementation of bit com-
mitment is for Alice to write down her bit in a piece of
paper, which is then put in a locked box and handed
over to Bob. While Alice cannot change the value of the
bit that she has written down, without the key to the
box Bob cannot learn it himself. At a later time, Alice
gives the key to Bob, who opens the box and recovers the
value of the committed bit. This illustrative example of
implementation is, however, inconvenient and insecure.
A locked box may be very heavy and Bob may still try
to open it by brute force (e.g. with a hammer).

What do we mean by cheating? As an example, a
cheating Alice may choose a particular value of b during
the commitment phase and tell Bob another value during
the opening phase. A bit commitment scheme is secure
against a cheating Alice only if such a fake commitment
can be discovered by Bob. For concreteness, it is instruc-
tive to consider a simple QBC protocol due to Bennett
and Brassard [2]. Its procedure goes as follows: Alice and
Bob first agree on a security parameter, a positive integer
s. The sender, Alice, chooses the value of the committed
bit, b. If b = 0, she prepares and sends Bob a sequence

1
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sumption that some measurements are performed by the
two participants. This is why this EPR-type of attack
was missed in earlier analysis.

Let us first introduce bit commitment. A bit com-
mitment scheme generally involves two parties, a sender,
Alice and a receiver, Bob. Suppose that Alice has a bit
(b = 0 or 1) in mind, to which she would like to be
committed towards Bob. That is, she wishes to provide
Bob with a piece of evidence that she has already chosen
the bit and that she cannot change it. Meanwhile, Bob
should not be able to tell from that evidence what b is.
At a later time, however, it must be possible for Alice
to open the commitment. In other words, Alice must be
able to show Bob which bit she has committed to and
convince him that this is indeed the genuine bit that she
had in mind when she committed.

A concrete example of an implementation of bit com-
mitment is for Alice to write down her bit in a piece of
paper, which is then put in a locked box and handed
over to Bob. While Alice cannot change the value of the
bit that she has written down, without the key to the
box Bob cannot learn it himself. At a later time, Alice
gives the key to Bob, who opens the box and recovers the
value of the committed bit. This illustrative example of
implementation is, however, inconvenient and insecure.
A locked box may be very heavy and Bob may still try
to open it by brute force (e.g. with a hammer).

What do we mean by cheating? As an example, a
cheating Alice may choose a particular value of b during
the commitment phase and tell Bob another value during
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Unconditionally secure quantum bit commitment is impossible

Dominic Mayers
Département IRO, Université de Montréal

C.P. 6128, succursale Centre-Ville,Montréal (Québec), Canada H3C 3J7.
(August 9, 2002)

The claim of quantum cryptography has always been that
it can provide protocols that are unconditionally secure, that
is, for which the security does not depend on any restriction
on the time, space or technology available to the cheaters.
We show that this claim does not hold for any quantum bit
commitment protocol. Since many cryptographic tasks use
bit commitment as a basic primitive, this result implies a
severe setback for quantum cryptography. The model used
encompasses all reasonable implementations of quantum bit
commitment protocols in which the participants have not met
before, including those that make use of the theory of special
relativity.

1994 PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c

a. Introduction. Quantum cryptography is often as-
sociated with a cryptographic application called key dis-
tribution [1,2] and it has achieved success in this area [5].
However, other applications of quantum mechanics to
cryptography have also been considered and a basic cryp-
tographic primitive called bit commitment, the main fo-
cus of this letter, was at the basis of most if not all of
these other applications [3,6,15,5].

In a concrete example of bit commitment, a party, Al-
ice, writes a bit b on a piece of paper and puts it into a
safe. She gives the safe to another party, Bob, but keeps
the key. The objective of this scheme, and of bit com-
mitment in general, is that Alice cannot change her mind
about the value of the bit b, but meanwhile Bob cannot
determine the bit b. At a later time, if Alice wants to
unveil b to Bob, she gives the key to Bob.

In 1993, a protocol was proposed to realize bit com-
mitment in the framework of quantum mechanics, and
the unconditional security (see sections b and c) of this
protocol has been generally accepted for quite some time.
However, this result turned out to be wrong. The non
security of this protocol, called the BCJL protocol, was
realized in the fall of 1995 [12]. After this discovery, Bras-
sard, Crépeau and other researchers have tried to find
alternative protocols [4]. Some protocols were based on
the theory of special relativity. For additional informa-
tion about the history of the result see [5]. See also [11].

Here it is shown that an unconditionally secure bit
commitment protocol is impossible, unless a computing
device, such as a beam splitter, a quantum gate, etc. can
be simultaneously trusted by both participants in the
protocol. This encompasses any protocol based on the
theory of special relativity. A preliminary version of the

proof appeared in [13].
b. The model for quantum protocols. It is neither

possible in this letter to describe in detail a model for
two-party quantum protocols, nor is it is useful for the
purpose of this letter. The following description includes
all that is necessary for our proof.

In our model, a two-party quantum protocol is exe-
cuted on a system HA ⊗ HB ⊗ HE where HA and HB

correspond to two areas, one on Alice’s side and one on
Bob’s side, and HE corresponds to the environment. We
adopt the “decoherence” point of view in which a mixed
state ρ of HA⊗HB is really the reduced state of HA⊗HB

entangled with the environment HE , the total system
HA ⊗ HB ⊗ HE always being in a pure state |ψ〉. The
systems HA and HB contain only two dimensional quan-
tum registers. Higher dimensional systems can be con-
structed out of two dimensional systems. Alice and Bob
can execute any unitary transformation on their respec-
tive system. In particular, they can introduce new quan-
tum registers in a fixed state |0〉. States that correspond
to different number of registers can be in linear super-
position. Any mode of quantum communication can be
adopted between Alice and Bob.

Without loss of generality, we can restrict ourselves to
binary outcome measurements. The environment is of
the form HE = HS ⊗HE,A ⊗HE,B where HS = HS,A ⊗
HS,B is a system that stores classical bits that have been
transmitted from HS,A on Alice’s side to HS,B on Bob’s
side or vice versa, and HE,A and HE,B store untransmit-
ted classical bits that are kept on Alice’s side and Bob’s
side respectively. To execute a binary outcome measure-
ment, a participant P ∈ {A,B}, where A and B stand for
Alice and Bob respectively, introduces a quantum regis-
ter in a fixed state |0〉. The participant P entangles this
register with the measured system initially in a state |φ〉
and obtains a new state of the form α |0〉|φ0〉+ β |1〉|φ1〉.
Then, he sends the new quantum register away to a mea-
suring apparatus in HE,P which amplifies and stores each
component |x〉 as a complex state |x〉(E,P ). The resulting
state is α |0〉(E,P )|φ0〉 + β |1〉(E,P )|φ1〉. Similarly, to gen-
erate a random bit one simply maps |0〉 into α |0〉+ β |1〉
and sends the register away in some part ofHE,P that will
amplify and store it as a state α |0〉(E,P )+β |1〉(E,P ). The
transmission of a classical bit x from Alice to Bob is rep-
resented by a transformation that maps |x〉(E,A)|0〉(E,B)

into |x〉(S,A)|x〉(S,B). A similar transformation exists for
the transmission of a classical bit from Bob to Alice.

Now, let us assume that the total system is in a super-
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Département IRO, Université de Montréal
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The claim of quantum cryptography has always been that
it can provide protocols that are unconditionally secure, that
is, for which the security does not depend on any restriction
on the time, space or technology available to the cheaters.
We show that this claim does not hold for any quantum bit
commitment protocol. Since many cryptographic tasks use
bit commitment as a basic primitive, this result implies a
severe setback for quantum cryptography. The model used
encompasses all reasonable implementations of quantum bit
commitment protocols in which the participants have not met
before, including those that make use of the theory of special
relativity.

1994 PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c

a. Introduction. Quantum cryptography is often as-
sociated with a cryptographic application called key dis-
tribution [1,2] and it has achieved success in this area [5].
However, other applications of quantum mechanics to
cryptography have also been considered and a basic cryp-
tographic primitive called bit commitment, the main fo-
cus of this letter, was at the basis of most if not all of
these other applications [3,6,15,5].
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proof appeared in [13].
b. The model for quantum protocols. It is neither

possible in this letter to describe in detail a model for
two-party quantum protocols, nor is it is useful for the
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tive system. In particular, they can introduce new quan-
tum registers in a fixed state |0〉. States that correspond
to different number of registers can be in linear super-
position. Any mode of quantum communication can be
adopted between Alice and Bob.
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binary outcome measurements. The environment is of
the form HE = HS ⊗HE,A ⊗HE,B where HS = HS,A ⊗
HS,B is a system that stores classical bits that have been
transmitted from HS,A on Alice’s side to HS,B on Bob’s
side or vice versa, and HE,A and HE,B store untransmit-
ted classical bits that are kept on Alice’s side and Bob’s
side respectively. To execute a binary outcome measure-
ment, a participant P ∈ {A,B}, where A and B stand for
Alice and Bob respectively, introduces a quantum regis-
ter in a fixed state |0〉. The participant P entangles this
register with the measured system initially in a state |φ〉
and obtains a new state of the form α |0〉|φ0〉+ β |1〉|φ1〉.
Then, he sends the new quantum register away to a mea-
suring apparatus in HE,P which amplifies and stores each
component |x〉 as a complex state |x〉(E,P ). The resulting
state is α |0〉(E,P )|φ0〉 + β |1〉(E,P )|φ1〉. Similarly, to gen-
erate a random bit one simply maps |0〉 into α |0〉+ β |1〉
and sends the register away in some part ofHE,P that will
amplify and store it as a state α |0〉(E,P )+β |1〉(E,P ). The
transmission of a classical bit x from Alice to Bob is rep-
resented by a transformation that maps |x〉(E,A)|0〉(E,B)

into |x〉(S,A)|x〉(S,B). A similar transformation exists for
the transmission of a classical bit from Bob to Alice.

Now, let us assume that the total system is in a super-
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Can Quantum Cryptography Imply Quantum Mechanics?

John A. Smolin
IBM T.J. Watson Research Center, Yorktown Heights,

NY 10598 smolin@watson.ibm.com

(Dated: October 10, 2003)

It has been suggested that the ability of quantum mechanics to allow secure distribution of secret
key together with its inability to allow bit commitment or communicate superluminally might be
sufficient to imply the rest of quantum mechanics. I argue using a toy theory as a counterexample
that this is not the case. I further discuss whether an additional axiom (key storage) brings back
the quantum nature of the theory.

One of the great desires of those who study both quan-
tum information theory and quantum foundations has
been to find simple information-theoretic axioms suffi-
cient to imply all the rest of quantum mechanics [1]. To
this end it has been suggested (private communication
from Fuchs and Brassard to Bub, reported in [2] and cf.

[3, 4]) that the existence of unconditionally secure cryp-
tographic key distribution (of the sort granted by quan-
tum mechanics [5, 6]), together with the impossibility of
secure bit commitment (also a feature of quantum me-
chanics [7, 8]) might comprise just such a sufficient set.
This is appealing as these two cryptographic primitives
capture two of the key properties of quantum mechan-
ics: Quantum key distribution is built on the idea that
information gathering causes a necessary disturbance to
quantum systems, while the bit commitment no-go the-
orem depends on an entanglement-based attack. More
recently, this question has been rephrased slightly, and
an axiom added by Clifton, Bub and Halvorson (CBH)
[9]. Their axioms are:

• No broadcasting of arbitrary information [10]—In
quantum mechanics, noncommuting density matri-
ces cannot be cloned or even distributed in such a
way that all marginal density matrices are correct.

• No unconditionally secure bit commitment.

• No superluminal communication transfer, i.e. a
measurement on one system does not affect other
systems.

In this paper I argue that these axioms are not sufficient
to imply quantum mechanics. To make the argument, I
propose an alternate toy theory of physics which satisfies
these axioms but which quite obviously will not imply
quantum mechanics. This result is in direct contradic-
tion to Clifton, Bub, and Halvorson’s, whose result seems
to depend on the additional assumption that a physical
theory must be a C∗ algebra. It is unclear at this time
just how much that additional assumption brings into the
discussion.

LOCKBOX MODELS

I will consider a class of toy models whose basic unit of
matter is the lockbox. A lockbox in general is an object
akin to a physical box that can contain bit strings and
cannot be opened except when the correct conditions ex-
ist to open the box. Depending on the model the box
might be opened with a combination, a physical key, or
something else. A lockbox may also perform other func-
tions on the data within it depending on various inputs.
Such boxes need not be allowed by physics, but instead
are the building block of toy theories.

For example, consider a lockbox with a combination
lock, that can contain a bit value b. The value cannot
be read out of the lockbox except if a particular string of
bits C—the combination—is presented to it. The bit b

and combination C are chosen by the lockbox’s creator at
the time of its creation. If the lockbox is presented with
an incorrect combination, the bit value is destroyed.

It can be helpful to think of such a lockbox as a physical
box, that one could made of brass or steel, but it must
be stressed that this can only be an approximation. The
bit value in the lockbox by definition cannot be read out
by any means other than using the correct combination,
whereas a brass or steel box can always be drilled or
blown open with explosives if enough effort is expended.

A true lockbox cannot exist in classical mechanics. It
is often said that one way in which quantum mechan-
ics differs from classical mechanics is that it cannot be
represented by a local hidden variable theory. This state-
ment hides a common oversight about classical mechan-
ics. Classical mechanics also is not correctly represented
by a local hidden variable theory, but by a local unhidden

variable theory—in principle every possible property of a
classical system can be measured perfectly [11] whereas
the contents of a lockbox are unconditionally protected.
Our example lockbox also differs from both classical and
quantum theory in that its behavior when the wrong
combination is applied is irreversible—the bit value is
destroyed and cannot be recovered [12]. Thus a lockbox
explicitly mimics the quantum property that unknown
nonorthogonal states cannot be cloned (copied) [13, 14]
or even measured without disturbance [15]. A lockbox
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This is appealing as these two cryptographic primitives
capture two of the key properties of quantum mechan-
ics: Quantum key distribution is built on the idea that
information gathering causes a necessary disturbance to
quantum systems, while the bit commitment no-go the-
orem depends on an entanglement-based attack. More
recently, this question has been rephrased slightly, and
an axiom added by Clifton, Bub and Halvorson (CBH)
[9]. Their axioms are:
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ces cannot be cloned or even distributed in such a
way that all marginal density matrices are correct.

• No unconditionally secure bit commitment.

• No superluminal communication transfer, i.e. a
measurement on one system does not affect other
systems.

In this paper I argue that these axioms are not sufficient
to imply quantum mechanics. To make the argument, I
propose an alternate toy theory of physics which satisfies
these axioms but which quite obviously will not imply
quantum mechanics. This result is in direct contradic-
tion to Clifton, Bub, and Halvorson’s, whose result seems
to depend on the additional assumption that a physical
theory must be a C∗ algebra. It is unclear at this time
just how much that additional assumption brings into the
discussion.

LOCKBOX MODELS

I will consider a class of toy models whose basic unit of
matter is the lockbox. A lockbox in general is an object
akin to a physical box that can contain bit strings and
cannot be opened except when the correct conditions ex-
ist to open the box. Depending on the model the box
might be opened with a combination, a physical key, or
something else. A lockbox may also perform other func-
tions on the data within it depending on various inputs.
Such boxes need not be allowed by physics, but instead
are the building block of toy theories.

For example, consider a lockbox with a combination
lock, that can contain a bit value b. The value cannot
be read out of the lockbox except if a particular string of
bits C—the combination—is presented to it. The bit b

and combination C are chosen by the lockbox’s creator at
the time of its creation. If the lockbox is presented with
an incorrect combination, the bit value is destroyed.

It can be helpful to think of such a lockbox as a physical
box, that one could made of brass or steel, but it must
be stressed that this can only be an approximation. The
bit value in the lockbox by definition cannot be read out
by any means other than using the correct combination,
whereas a brass or steel box can always be drilled or
blown open with explosives if enough effort is expended.

A true lockbox cannot exist in classical mechanics. It
is often said that one way in which quantum mechan-
ics differs from classical mechanics is that it cannot be
represented by a local hidden variable theory. This state-
ment hides a common oversight about classical mechan-
ics. Classical mechanics also is not correctly represented
by a local hidden variable theory, but by a local unhidden

variable theory—in principle every possible property of a
classical system can be measured perfectly [11] whereas
the contents of a lockbox are unconditionally protected.
Our example lockbox also differs from both classical and
quantum theory in that its behavior when the wrong
combination is applied is irreversible—the bit value is
destroyed and cannot be recovered [12]. Thus a lockbox
explicitly mimics the quantum property that unknown
nonorthogonal states cannot be cloned (copied) [13, 14]
or even measured without disturbance [15]. A lockbox



The task is not to make sense of the quantum
axioms by heaping more structure, more definitions,

more science-fiction imagery on top of them,
but to throw them away wholesale and start afresh.
From what deep physical principles might we derive

this exquisite mathematical structure?
Those principles should be crisp [and] compelling.
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Characterizing Quantum Theory in Terms of
Information-Theoretic Constraints

(Rob Clifton, Jeff Bub & Hans Halvorson, 2003)

Why the Quantum?
(Jeff Bub, 2003)



" The project was first suggested to me by
remarks by Gilles Brassard at the meeting

'Quantum Foundations in the Light of
Quantum Information and Cryptography'

held in Montreal, May 17–19, 2000. "

— Jeff Bub (Why the Quantum)



Email from Rob Clifton to Jeff Bub, 4 December 2001

" It was good to talk to you over pizza today.
In fact, is was the most exciting 'truly quantum'

conversation I've had here with someone
since Hans [Halvorson] left in July. "



Quantum mechanics is fundamentally a theory
about the possibilities and impossibilities

of information transfer in our world,
not a theory about the mechanics of

nonclassical waves and particles.
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J.B.: Because we wanted to use
"Impossibility of" axioms.

G.B.: But "Confidentiality Possible" means
"Impossibility of Eavesdropping" !

J.B.: . . .   
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It has been suggested that the ability of quantum mechanics to allow secure distribution of secret
key together with its inability to allow bit commitment or communicate superluminally might be
sufficient to imply the rest of quantum mechanics. I argue using a toy theory as a counterexample
that this is not the case. I further discuss whether an additional axiom (key storage) brings back
the quantum nature of the theory.

One of the great desires of those who study both quan-
tum information theory and quantum foundations has
been to find simple information-theoretic axioms suffi-
cient to imply all the rest of quantum mechanics [1]. To
this end it has been suggested (private communication
from Fuchs and Brassard to Bub, reported in [2] and cf.

[3, 4]) that the existence of unconditionally secure cryp-
tographic key distribution (of the sort granted by quan-
tum mechanics [5, 6]), together with the impossibility of
secure bit commitment (also a feature of quantum me-
chanics [7, 8]) might comprise just such a sufficient set.
This is appealing as these two cryptographic primitives
capture two of the key properties of quantum mechan-
ics: Quantum key distribution is built on the idea that
information gathering causes a necessary disturbance to
quantum systems, while the bit commitment no-go the-
orem depends on an entanglement-based attack. More
recently, this question has been rephrased slightly, and
an axiom added by Clifton, Bub and Halvorson (CBH)
[9]. Their axioms are:

• No broadcasting of arbitrary information [10]—In
quantum mechanics, noncommuting density matri-
ces cannot be cloned or even distributed in such a
way that all marginal density matrices are correct.

• No unconditionally secure bit commitment.

• No superluminal communication transfer, i.e. a
measurement on one system does not affect other
systems.

In this paper I argue that these axioms are not sufficient
to imply quantum mechanics. To make the argument, I
propose an alternate toy theory of physics which satisfies
these axioms but which quite obviously will not imply
quantum mechanics. This result is in direct contradic-
tion to Clifton, Bub, and Halvorson’s, whose result seems
to depend on the additional assumption that a physical
theory must be a C∗ algebra. It is unclear at this time
just how much that additional assumption brings into the
discussion.

LOCKBOX MODELS

I will consider a class of toy models whose basic unit of
matter is the lockbox. A lockbox in general is an object
akin to a physical box that can contain bit strings and
cannot be opened except when the correct conditions ex-
ist to open the box. Depending on the model the box
might be opened with a combination, a physical key, or
something else. A lockbox may also perform other func-
tions on the data within it depending on various inputs.
Such boxes need not be allowed by physics, but instead
are the building block of toy theories.

For example, consider a lockbox with a combination
lock, that can contain a bit value b. The value cannot
be read out of the lockbox except if a particular string of
bits C—the combination—is presented to it. The bit b

and combination C are chosen by the lockbox’s creator at
the time of its creation. If the lockbox is presented with
an incorrect combination, the bit value is destroyed.

It can be helpful to think of such a lockbox as a physical
box, that one could made of brass or steel, but it must
be stressed that this can only be an approximation. The
bit value in the lockbox by definition cannot be read out
by any means other than using the correct combination,
whereas a brass or steel box can always be drilled or
blown open with explosives if enough effort is expended.

A true lockbox cannot exist in classical mechanics. It
is often said that one way in which quantum mechan-
ics differs from classical mechanics is that it cannot be
represented by a local hidden variable theory. This state-
ment hides a common oversight about classical mechan-
ics. Classical mechanics also is not correctly represented
by a local hidden variable theory, but by a local unhidden

variable theory—in principle every possible property of a
classical system can be measured perfectly [11] whereas
the contents of a lockbox are unconditionally protected.
Our example lockbox also differs from both classical and
quantum theory in that its behavior when the wrong
combination is applied is irreversible—the bit value is
destroyed and cannot be recovered [12]. Thus a lockbox
explicitly mimics the quantum property that unknown
nonorthogonal states cannot be cloned (copied) [13, 14]
or even measured without disturbance [15]. A lockbox
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something else. A lockbox may also perform other func-
tions on the data within it depending on various inputs.
Such boxes need not be allowed by physics, but instead
are the building block of toy theories.

For example, consider a lockbox with a combination
lock, that can contain a bit value b. The value cannot
be read out of the lockbox except if a particular string of
bits C—the combination—is presented to it. The bit b

and combination C are chosen by the lockbox’s creator at
the time of its creation. If the lockbox is presented with
an incorrect combination, the bit value is destroyed.

It can be helpful to think of such a lockbox as a physical
box, that one could made of brass or steel, but it must
be stressed that this can only be an approximation. The
bit value in the lockbox by definition cannot be read out
by any means other than using the correct combination,
whereas a brass or steel box can always be drilled or
blown open with explosives if enough effort is expended.

A true lockbox cannot exist in classical mechanics. It
is often said that one way in which quantum mechan-
ics differs from classical mechanics is that it cannot be
represented by a local hidden variable theory. This state-
ment hides a common oversight about classical mechan-
ics. Classical mechanics also is not correctly represented
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Clifton, Bub, and Halvorson (CBH) have argued that quantum mechanics can be derived from
three cryptographic, or broadly information-theoretic, axioms. But Smolin disagrees, and he has
given a toy theory that he claims is a counterexample. Here we show that Smolin’s toy theory
violates an independence condition for spacelike separated systems that was assumed in the CBH
argument. We then argue that any acceptable physical theory should satisfy this independence
condition.

INTRODUCTION

In a recent note, Smolin [4] has presented a toy theory
that simulates some interesting cryptographic features
of quantum mechanics. Most interestingly, Smolin’s toy
theory satisfies the three cryptographic, or information-
theoretic, axioms from which Clifton, Bub, and Halvor-
son (CBH) [1] have claimed to be able to derive quantum
mechanics. So, Smolin argues that, contra CBH, QM
cannot be derived from these three axioms.

We agree with Smolin that QM is not a logical conse-
quence of the three information-theoretic axioms, taken
in complete isolation from any theoretical context. In
fact, we think that attempting such a derivation would
be futile, as shown by the history of failed attempts (e.g.,
the quantum logic program) to derive QM from com-
pletely explicit, physically plausible axioms. When such
attempts have not failed miserably, their partial successes
have come at the expense of complicating the axioms to
the point of destroying all physical insight.

The failure of attempts at theoretically-neutral deriva-
tions of QM does not undermine the importance of pro-
viding characterizations within some judiciously chosen
framework of background assumptions — these assump-
tions might be explicit (as in CBH’s assumption that the-
ories permit a C∗-algebraic formulation), or they might
be tacit (as, e.g., in Einstein’s assumption that space-
time is continuous and not discrete). For someone con-
cerned with diachronic relationships between theories,
it is an extremely interesting question to ask whether
there is a framework that encompasses both the old and
the new theory, and whether there are salient physi-
cal postulates that distinguish the two theories. CBH
have answered this question in the affirmative for clas-
sical and quantum mechanics: the C∗-algebraic frame-
work encompasses both theories, and quantum mechan-
ics is distinguished in terms of its satisfaction of the three
information-theoretic axioms.

But to be more specific, we argue here that Smolin’s
toy theory is so remote from classical or quantum me-
chanics that it holds little physical interest. In particular,
we show that Smolin’s theory violates an independence
condition for distinct systems that is taken for granted in
both classical and quantum mechanics. We then argue
that the failure of this independence condition leads to
pathologies that are unacceptable in any physical theory.

AGAINST SERIAL NUMBERS

CBH argue that QM can be derived from three axioms:
no superluminal information transfer via measurement,
no cloning [7], and no bit commitment. Roughly speak-
ing, the no cloning axiom says that there cannot be a
machine that accepts arbitrary input states, and returns
two copies of any state it receives. The no bit commit-
ment axiom states that it is not possible for one observer,
Alice, to send a bit value to a second observer, Bob, in
such a way that Bob cannot access the bit value until
Alice provides him with a key, and such that Alice can-
not change her bit value after she has sent it to Bob. It
is well-known that elementary QM satisfies these three
cryptographic axioms. CBH claim that QM can also be
derived from these three axioms, and so the conjunction
of the axioms is equivalent to the claim that QM is true.

Smolin’s toy theory consists of symmetric pairs of lock-
boxes, where each pair of lockboxes has a unique serial
number. Furthermore, each lockbox contains a bit value,
which is accessible to inspection only when the lockbox
is in the presence of its partner. For the details of how
the lockbox theory satisfies the three axioms, we refer the
reader to Smolin’s paper. But note that the assumption
of unique serial numbers is needed to ensure that cloning
is impossible.

Most of the details of Smolin’s lockbox theory are irrel-
evant to his argument against the CBH characterization
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Clifton, Bub, and Halvorson (CBH) have argued that quantum mechanics can be derived from
three cryptographic, or broadly information-theoretic, axioms. But Smolin disagrees, and he has
given a toy theory that he claims is a counterexample. Here we show that Smolin’s toy theory
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We present a toy theory that is based on a simple principle: the number of questions about
the physical state of a system that are answered must always be equal to the number that are
unanswered in a state of maximal knowledge. A wide variety of quantum phenomena are found to
have analogues within this toy theory. Such phenomena include: the noncommutativity of measure-
ments, interference, the multiplicity of convex decompositions of a mixed state, the impossibility of
discriminating nonorthogonal states, the impossibility of a universal state inverter, the distinction
between bi-partite and tri-partite entanglement, the monogamy of pure entanglement, no cloning, no
broadcasting, remote steering, teleportation, dense coding, mutually unbiased bases, unextendible
product bases, and many others. The diversity and quality of these analogies is taken as evidence
for the view that quantum states are states of incomplete knowledge rather than states of reality.
A consideration of the phenomena that the toy theory fails to reproduce, notably, violations of Bell
inequalities and the existence of a Kochen-Specker theorem, provides clues for how to proceed with
a research program wherein the quantum state being a state of incomplete knowledge is the idea
upon which one never compromises.
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I. INTRODUCTION

In this article, we introduce a simple toy theory based
on a principle that restricts the amount of knowledge an
observer can acquire about reality. This theory, although
not equivalent to quantum theory nor even competitive
as an explanation of empirical phenomena, bears an un-
canny resemblance to the latter insofar as it reproduces
in detail a large number of phenomena that are typically
taken to be characteristically quantum. This, and the
fact that the object analogous to the quantum state in
the toy theory is a state of incomplete knowledge, are
the grounds upon which we argue for our thesis, that
quantum states are also states of incomplete knowledge.

We begin by clarifying the dichotomy between states
of reality and states of knowledge. To be able to refer to
this distinction conveniently, we introduce the qualifiers
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Abstract

Clifton, Bub, and Halvorson [Foundations of Physics 33, 1561–
1591, (2003)] have recently argued that quantum theory is charac-
terized by its satisfaction of three information-theoretic axioms. How-
ever, it is not difficult to construct apparent counterexamples to the
CBH characterization theorem. In this paper, we discuss the limits of
the characterization theorem, and we provide some technical tools for
checking whether a theory (specified in terms of the convex structure
of its state space) falls within these limits.

1 Introduction

Some would like to argue that quantum information theory has revolution-
ary implications for the philosophical foundations of QM (see, e.g., Bub,
2004; Fuchs, 2003). Whether or not this claim is true, there is no doubt
that quantum information theory presents us with new perspectives from
which we can approach traditional questions about the interpretation of
QM. One such question asks whether there are natural physical postulates
that capture the essence of QM — postulates that tell us what sets QM
apart from other physical theories, and in particular from its predecessor
theories. The advent of quantum information theory suggests that we look
for information-theoretic postulates that characterize (i.e., are equivalent
to) QM.

A positive answer to this question has been supplied by Clifton, Bub,
and Halvorson (2003). Clifton, Bub and Halvorson (CBH) show that, within
the C∗-algebraic framework for physical theories, quantum theories are sin-
gled out by their satisfaction of three information-theoretic axioms: 1. no

∗hhalvors@princeton.edu. This is version 2.
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Abstract

The usual formulation of quantum theory is based on
rather obscure axioms (employing complex Hilbert
spaces, Hermitean operators, and the trace formula
for calculating probabilities). In this paper it is
shown that quantum theory can be derived from five
very reasonable axioms. The first four of these ax-
ioms are obviously consistent with both quantum the-
ory and classical probability theory. Axiom 5 (which
requires that there exist continuous reversible trans-
formations between pure states) rules out classical
probability theory. If Axiom 5 (or even just the word
“continuous” from Axiom 5) is dropped then we ob-
tain classical probability theory instead. This work
provides some insight into the reasons why quantum
theory is the way it is. For example, it explains the
need for complex numbers and where the trace for-
mula comes from. We also gain insight into the rela-
tionship between quantum theory and classical prob-
ability theory.

1 Introduction

Quantum theory, in its usual formulation, is very ab-
stract. The basic elements are vectors in a complex
Hilbert space. These determine measured probabil-
ities by means of the well known trace formula - a
formula which has no obvious origin. It is natural to
ask why quantum theory is the way it is. Quantum

∗hardy@qubit.org. This is version 4

theory is simply a new type of probability theory.
Like classical probability theory it can be applied
to a wide range of phenomena. However, the rules
of classical probability theory can be determined by
pure thought alone without any particular appeal to
experiment (though, of course, to develop classical
probability theory, we do employ some basic intu-
itions about the nature of the world). Is the same
true of quantum theory? Put another way, could a
19th century theorist have developed quantum the-
ory without access to the empirical data that later
became available to his 20th century descendants?
In this paper it will be shown that quantum theory
follows from five very reasonable axioms which might
well have been posited without any particular access
to empirical data. We will not recover any specific
form of the Hamiltonian from the axioms since that
belongs to particular applications of quantum the-
ory (for example - a set of interacting spins or the
motion of a particle in one dimension). Rather we
will recover the basic structure of quantum theory
along with the most general type of quantum evo-
lution possible. In addition we will only deal with
the case where there are a finite or countably infinite
number of distinguishable states corresponding to a
finite or countably infinite dimensional Hilbert space.
We will not deal with continuous dimensional Hilbert
spaces.

The basic setting we will consider is one in which
we have preparation devices, transformation devices,
and measurement devices. Associated with each
preparation will be a state defined in the following
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Quantum theory from four of Hardy’s axioms

Rüdiger Schack
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In a recent paper [e-print quant-ph/0101012], Hardy has given a derivation of

“quantum theory from five reasonable axioms.” Here we show that Hardy’s first

axiom, which identifies probability with limiting frequency in an ensemble, is not

necessary for his derivation. By reformulating Hardy’s assumptions, and modifying

a part of his proof, in terms of Bayesian probabilities, we show that his work can be

easily reconciled with a Bayesian interpretation of quantum probability.

I. INTRODUCTION

In Bayesian probability theory [1, 2], probabilities are not objective states of nature,
but rather are taken to be degrees of belief that determine an agent’s decisions in the face
of uncertainty. It can be shown that degrees of belief must obey the usual rules of the
probability calculus if the agent’s decisions are rational (for references and a summary of
the argument, see [3]). In a Bayesian framework, probabilities and measured frequencies are
strictly separate concepts. This leads to conceptual clarity in statements that involve both
probabilities and frequencies. Furthermore, adopting the Bayesian viewpoint has important
practical consequences in the field of statistics [2, 4].

If the Bayesian interpretation is applied to quantum mechanical probabilities, one is led
naturally to the viewpoint that quantum states represent states of belief. This viewpoint
is attractive for many reasons. For instance, it eliminates the difficulties associated with
regarding quantum state collapse as a real physical process. Within the Bayesian framework,
one can account effortlessly for the tight connection between measured frequencies and the
probabilities obtained from the quantum probability rule [5]. The Bayesian approach has led
to new mathematical results [3, 6], a better understanding of prior information in quantum
tomography [7], and an optimized entanglement purification protocol [8].

Hardy [9] (see also [10]) has recently given a derivation of the mathematical structure
of quantum theory from five simple axioms. In his first axiom, Hardy identifies probability
with measured frequency in the limit of an infinite number of repetitions of a given experi-
ment. In Hardy’s formulation, a quantum state is a property of a preparation device. This
is a problematical notion. Attempts to base probability theory on a definition of probability
as frequency in infinite ensembles [11] have largely failed (see, e.g., [12, 13]). For instance,
without further complicating assumptions, a relative frequency specified for an infinite en-
semble does not in any way restrict the corresponding frequency for a finite subensemble.
Furthermore, attaching the notion of a quantum state to a preparation device appears to
limit quantum theory to the description of laboratory experiments. But surely one would

http://arXiv.org/abs/quant-ph/0101012
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2)  Howard Barnum    | - - - - - - - - - X X X X X X X X X X X X X |
3)  Charles Bennett  | - - X X X - - - - - - - - - - - - - - - - - |
4)  Gilles Brassard  | X X X X X X X X X X X X X X X X X X X X X X |
5)  Hans Briegel     | X X X X X X X X - - - - - - - - - - - - - - |
6)  Jeffrey Bub      | - - - - - - - - - - X X X X X X X X X - - - |
7)  Adan Cabello     | X X X X X X X X X X X X X X X X X X X X X X |
8)  Carlton Caves    | - - - - - - - X X X X X X X X X X X X X X X |
9)  Claude Crépeau   | - - - - - - - - - X X X X X X X X X X X X X |
10) José Fernandez   | X X X X X X X X X X X X X X X X X X X X X X |
11) R. Floreanini    | - - - - - - - - - - - - - X X X X X X X X - |
12) Chris Fuchs      | X X X X X X X X X X X X X X X X X X X X X X |
13) Ernesto Galvao   | - - - - - - - - X X X X X X - - - - - - - - |
14) Nicolas Gisin    | X X X X X X X - - - - - - - - - - - - - - - |
15) Lucien Hardy     | - - - - - - - X X X X X X X X X X X X X X X |
16) Patrick Hayden   | X X X X X X X - - - - - - - - - - - - - - - |
17) F. Markopoulou   | - - - - - - - - - - - - - - - X X X X - - - |
18) Dominic Mayers   | - X X X X X X X X X X X X X X - - - - - - - |
19) David Mermin     | - - - - - - - - - - - - - - - - X X X X X X |
20) David Poulin     | X X X X X X X X X X X X X X X X X X X X X X |
21) Ruediger Schack  | - - - - - - - - X X X X X X X X X X X X - - |
22) Ben Schumacher   | X X X X X X X X X X X X X X X X X X X X X X |
23) John Smolin      | - - - - - - - - X X X X X X X X X X X X X X |
24) Robert Spekkens  | - X X X X X X X X X X X X - - - - - - - - - |
25) Chris Timpson    | - - - - - - - - - - - - - - - X X X X X X X |
26) Stefan Wolf      | X X X X X X X X X X X X X X X X X X X X X X |
27) William Wootters | X X X - - - - - - - - - - - - - - - - - - - | 



Quantum Logic
Meets

 Quantum Information

Växjö University, Sweden

1–6 June 2003



Scott Aaronson
Guido Bacciagaluppi

Howard Barnum
Stephen Bartlett

Paul Busch
Bob Coecke

Christopher Fuchs
Alexei Grinbaum
Hans Halvorson
Lucien Hardy
Piero Mana

Marcos Perez-Suarez
Ruediger Schack

John Smolin
Robert Spekkens
Alexander Wilce



Rolf Landauer has once claimed that
" information is physical "

The main thesis of this talk is that
" physics is informational "




