Quantum walk algorithms: element distinctness and spatial search

> Andris Ambainis Institute for Advanced Study, Princeton

Today's talk

- New technique for quantum algorithms.
- Quantum walks (q. counterparts of random walks).
- Element distinctness.
- Spatial search.

- Determine if x₁, x₂, ..., x_N contains two equal numbers.
- Classically: N questions.
- Quantum: O(N^{2/3}).

Spatial search

- N items on $\sqrt{N*}\sqrt{N}$ grid.
- Some items marked.
- Find marked item.
- Grover: Ω(N).
- O(√N log N) time in 2D.
 O(√N) time in 3D.

Random walk on line

- Start in location 0.
- In every step, move left with probability 1/2, move right with probability 1/2.

Random walk on line

State (x, d), x –location, d-direction.

At each step,

- Let d=left with prob. $\frac{1}{2}$, d=right w. prob. $\frac{1}{2}$.
- (x, left) => (x-1, left);
- (x, right) => (x+1, right).

Quantum walk on line

States |x, d>, x –location, d-direction.

"Coin flip":

$$\begin{cases} |left \rangle \rightarrow \frac{1}{\sqrt{2}} |left \rangle + \frac{1}{\sqrt{2}} |right \rangle \\ |right \rangle \rightarrow \frac{1}{\sqrt{2}} |left \rangle - \frac{1}{\sqrt{2}} |right \rangle \end{cases}$$

Shift:

$$\begin{cases} |x, left\rangle \rightarrow |x-1, left\rangle \\ |x, right\rangle \rightarrow |x+1, right\rangle \end{cases}$$

Classical vs. quantum

Run for t steps, measure the final location.

Quantum walks on general graphs

States: $|v\rangle|e\rangle$,

e- edge from v.

1. Unitary "coin flip" on |e \rangle . 2. Shift |v \rangle |e $\rangle \rightarrow$ |u \rangle |e \rangle , u - other endpoint of edge e.

Element distinctness

- Numbers x₁, x₂, ..., x_{N.}
- Determine if two of them are equal.
- Well studied problem in classical CS.
- Classically: N questions.

- $\mathbf{X}_1 \quad \mathbf{X}_2 \quad \mathbf{X}_3 \qquad \mathbf{X}_N$
- Buhrman et.al., 2001]: O(N^{3/4}) quantum algorithm.
- [Shi, 2002]: $\Omega(N^{2/3})$ quantum lower bound.
- This talk: O(N^{2/3}).

Element distinctness as search on a graph

N^{2/3} N^{2/3}+1

- Vertices: S_⊆{1, ..., N} of size N^{2/3} or N^{2/3}+1.
- Edges: (S,T), T=S∪{i}.
- Marked: S contains
 - i, j, $x_i = x_j$.
- In one step, we can
 - Check if vertex marked; or
 - Move to adjacent vertex.

Element distinctness as search on a graph

- Finding a marked vertex in M steps => element distinctness in M+N^{2/3} steps.
- At the beginning, read all x_i
- Can check if vertex marked with 0 queries.
- Can move to neighbour with 1 query.

Quantum walk search [Shenvi, Kempe, Whaley, 2003]

- Start with a uniform superposition over all S.
- Apply one transition rule if S marked, another if S not marked.
- Quantum walk leads to a state in which marked S have higher amplitudes.

Walk on subsets

1. "Coin flip" unitary on k. 2. $|S\rangle |k\rangle \Rightarrow |S \cup \{k\}\rangle |k\rangle$, query x_k. 3. "Coin flip" unitary on k. 4. $|S\rangle |k\rangle \Rightarrow |S - \{k\}\rangle |k\rangle$, erase x_k.

States $|S\rangle|k\rangle \bigotimes_{i\in S} |x_i\rangle$

Quantum "coin flip"

Restricted to $k{\in}S$ or $k{\notin}S$

Algorithm for element distinctness

• Prepare $\sum_{\substack{|S|=N^{2/3},\\k \notin S}} |S\rangle |k\rangle \otimes_{i \in S} |x_i\rangle$

- O(N^{1/3}) times:
 - $|S \rightarrow -|S > \text{ if } S \text{ contains } i, j \text{ s.t. } x_i = x_i;$

• O (N^{1/3}) steps of quantum walk.

Analysis of algorithm

Assume unique i, j s.t. $x_i = x_j$.

- 1. Simplify analysis by symmetry.
- 2. Analysis of 1 quantum walk step.
- 3. Analysis of entire algorithm.

Symmetry

- 5 types of states $|S>|k>, k \notin S$:
 - Image {i, j}∩S=0, k≠i, k≠j.
 - {i, j}∩S=0, k=i or k=j.
 - I {i, j}∩S=1, k≠i, k≠j.
 - {i, j}∩S=1, k=i or k=j.
 - {i, j}∩S=2.
- States of each type have equal amplitudes (symmetry, induction).

Symmetry

- For each of 5 types, take the uniform superposition of all |S>|k>.
- At any time, the state of algorithm is a superposition of |Ψ₁⟩, |Ψ₂⟩, |Ψ₃⟩, |Ψ₄⟩, |Ψ₅⟩.
- Suffices to analyze 5-dimensional subspace.

Analysis of quantum walk

- One step of q. walk is described by 5*5 matrix.
- Find eigenvalues and eigenvectors of this matrix.

Analysis of quantum walk

- One eigenvector is a uniform superposition of all |S>|k>, k ∉ S, with eigenvalue 1.
- The other eigenvalues are e^{iθ1}, e^{-iθ1}, e^{iθ2}, e^{-iθ2}.

$$\theta_1 = \frac{C_1}{\sqrt{|S|}} = \frac{C_1}{N^{1/3}}, \quad \theta_2 = \frac{C_2}{\sqrt{|S|}} = \frac{C_2}{N^{1/3}}$$

N^{1/3} steps of quantum walk

- The uniform superposition of all |S>|k>, k ∉ S with eigenvalue 1.
- The other eigenvalues are e^{iθ1}, e^{-iθ1}, e^{iθ2}, e^{-iθ2}.

$$\theta_1 = C_1, \quad \theta_2 = C_2$$

Algorithm for element distinctness

• Prepare $\sum_{\substack{|S|=N^{2/3},\\k \notin S}} |S\rangle |k\rangle \otimes_{i \in S} |x_i\rangle$

- O(N^{1/3}) times:
 - $|S \rightarrow -|S > \text{ if } S \text{ contains } i, j \text{ s.t. } x_i = x_i;$

• O (N^{1/3}) steps of quantum walk.

Analysis of entire algorithm $\left| \psi_{mark} \right\rangle = \sum_{\substack{S,k:\\i,j\in S}} \left| S \right\rangle \left| k \right\rangle$ $|\psi_{all}\rangle = \sum_{S,k} |S\rangle |k\rangle$

Analysis of entire algorithm

 Ψ_{mark} >

 $|\Psi_{all}>$

- Start in $|\Psi_{all}>$.
 - O(N^{1/3}) times repeat:

•
$$|\Psi_{mark}\rangle \rightarrow - |\Psi_{mark}\rangle$$
.

 Rotate the subspace orthogonal to |Ψ_{all}> by e^{iθ}, |θ|≥const.

<u>Lemma</u> The final state has a constant overlap with $|\Psi_{mark}>$.

Main lemma

<u>Lemma</u> The final state has a constant overlap with $|\Psi_{mark}>$.

General statement; applies to any sequence of 2 transformations.

Examples: Grover, element distinctness, other search problems?

Lemma can be used as a black box.

Handling multiple collisions

- What if multiple i, j: $x_i = x_j$?
- Sample part of x_i, i∈{1, 2, ..., N} to get unique i, j: x_i = x_j.

Element k-distinctness

- $\mathbf{X}_1 \ \mathbf{X}_2 \ \mathbf{X}_3 \qquad \mathbf{X}_N$
- Numbers x₁, x₂, ..., x_N.
- Determine if there are k equal elements.
- Similar algorithm solves the problem with O(N^{(k-1)/k}) queries.

Related work

- [Childs, Eisenberg, 2003, Santha 2004]: different analysis.
- [Magniez, Santha, Szegedy, 2003]: triangle finding.
- [Buhrman, Spalek, 2003]: testing matrix product.

Triangle finding [Magniez, Santha, Szegedy, 03]

- Graph G with n vertices.
- We want to know if G contains a triangle.
- O(n²) time classically.
- O(n^{1.3}) time quantum algorithm.
- Uses element distinctness as black box.

Testing matrix multiplication [Buhrman, Spalek 03]

- n*n matrices A, B, C.
- Does A*B=C?
- Classically: O(n²) time.
- Quantum: O(n^{1.67}) time.
- Uses quantum walk on sets of columns/rows.

- $\mathbf{X}_1 \quad \mathbf{X}_2 \quad \mathbf{X}_3 \qquad \mathbf{X}_n$
- Find i for which $x_i = 1$.
- Questions: ask i, get x_i.
- Classically, n questions.
- Quantum, O(√n) questions [Grover, 1996].

Quantum search on grids [Benioff, 2000]

• $\sqrt{n*} \sqrt{n}$ grid. **Distance between** opposite corners = $2\sqrt{n}$. Grover's algorithm takes $\sqrt{n} \sqrt{n} = n$ steps.

No quantum speedup.

Quantum search on grids

- [Aaronson, A, 2003] non-quantum walk algorithm.
- O($\sqrt{N} \log^2 N$) time algorithm for 2D grid.
- O(√N) time algorithm for 3 and more dimensions.

Quantum search on grids

- [Childs, Goldstone, 2003]: continuoustime quantum walk.
- O($\sqrt{N} \log N$) time algorithm for 4D grid.
- O(√N) time algorithm for 5 and more dimensions.

Quantum walks on grids

- This talk: discrete-time quantum walk.
- O($\sqrt{N} \log N$) time algorithm for 2D grid.
- O(√N) time algorithm for 3 and more dimensions.
- Improves over [Aaronson, A].
- Shows difference between discrete and continuous time quantum walks.

Quantum walk on grid

- Basis states $|x,y,\leftrightarrow\rangle$, $|x, y, \rightarrow\rangle$, $|x, y, \uparrow\rangle$, $|x, y, \downarrow\rangle$.
- Coin flip on direction:

$$\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Quantum walk on grid

- Shift:
 - $|x, y, \leftrightarrow \rangle \Rightarrow |x-1, y, \rightarrow \rangle$ $|x, y, \rightarrow \rangle \Rightarrow |x+1, y, \leftarrow \rangle$ $|x, y, \uparrow \rangle \Rightarrow |x, y-1, \downarrow \rangle$ $|x, y, \downarrow \rangle \Rightarrow |x, y+1, \uparrow \rangle$

Search by quantum walk

- Perform a quantum walk with different "coin flip" transformation in marked locations.
- After $O(\sqrt{N \log N})$ steps, measure the state.
- Gives marked |x, y, d> with prob. 1/log N.
- In 3 and more dimensions, O(√N) steps, constant probability.

Discrete time quantum walks

- State |x, y>|d>, with (x, y) being location, d direction (\leftarrow , \uparrow , \rightarrow , \downarrow).
 - "Coin flip" on |d>;
 - Modify |x, y> dependent on |d>.
- Many possible transformations for "coin flip", with different results.

Different quantum walk

Same coin flip

(1	1	1	1
$\frac{-}{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$
1	1	1	1
$\overline{2}$	$\overline{2}$	$\overline{2}$	2
1	1	1	1
$\overline{2}$	$\overline{2}$	$-\frac{1}{2}$	$\overline{2}$
1	1	1	_ 1
$\sqrt{2}$	$\overline{2}$	$\overline{2}$	$\left(\frac{1}{2}\right)$

• Different shift $|x, y, \uparrow \rangle \rightarrow |x-1, y, \uparrow \rangle$ $|x, y, \downarrow \rangle \rightarrow |x+1, y, \downarrow \rangle$ $|x, y, \leftarrow \rangle \rightarrow |x, y-1, \leftarrow \rangle$ $|x, y, \rightarrow \rangle \rightarrow |x, y+1, \rightarrow \rangle$

Different coin flip for marked locations

Different quantum walk

 <u>Claim</u> The probability of being in marked location never exceeds 2/N.

Application: set disjointness

- Alice has set A⊆{1, 2, ..., N}, Bob has B⊆{1, 2, ..., N}.
- They want to know if there is i: $i \in A$, $i \in B$.
- How many qubits of communication?
- [Buhrman et.al., 97]: $O(\sqrt{N} \log N)$.
- [Hoyer, de Wolf 02]: O($\sqrt{N} c^{\log * N}$).
- [Razborov 02]: $\Omega(\sqrt{N})$.
- [Aaronson, A, 03]: O(√N).

Set disjointness

- Cube of volume N.
- Divide in N subcubes.
- Alice writes 1 in ith subcube if i∈A.
- Bob writes 1 in ith subcube if i∈B.

Set disjointness

- Is there a location where both Alice and Bob have 1?
- Alice and Bob run
 O(√N) algorithm for
 3D search.
- Each step 5 qubit communication.

More information

- Element distinctness A, quantph/0311001.
- Search on grid A, Kempe, Rivosh, Shenvi, coming soon.

Open problems

- What is the complexity of finding if there are k equal items x_{i1} = ... = x_{ik}?
- Algorithm: O(N^{(k-1)/k}).
- Lower bound: $\Omega(N^{2/3})$.

Open problems

- Our element distinctness algorithm uses O(N^{2/3}) space.
- Algorithm with less space?
- Space restricted to M items:
 - Quantum: O(N/ \sqrt{M}) queries.
 - Classical: O(N²/M) queries.
- Quantum speeds up time but not space.
- Quantum lower bounds on space?

Open problems

- On 2-D grid, why one coin succeeds and the other fails? Any correspondence to physics?
- How to handle multiple marked states in quantum walk algorithms?
- Can we speed up classical Markov chain algorithms (approximating permanent)?