Quantum walk algorithms: element distinctness and spatial search

Andris Ambainis

Institute for Advanced Study, Princeton

Today's talk

- New technique for quantum algorithms.
- Quantum walks (q. counterparts of random walks).
- Element distinctness.
- Spatial search.

Element distinctness

0	1	0	\cdots	0
x_{1}	x_{2}	x_{3}		
x_{n}				

- Determine if $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}$ contains two equal numbers.
- Classically: N questions.
- Quantum: $\mathrm{O}\left(\mathrm{N}^{2 / 3}\right)$.

Spatial search

- N items on $\sqrt{ } \mathrm{N}^{*} \sqrt{ } \mathrm{~N}$ grid.
- Some items marked.
- Find marked item.
- Grover: $\Omega(\mathrm{N})$.
- $O(\sqrt{ } N \log N)$ time in 2D.
- $\mathrm{O}(\sqrt{ } \mathrm{N})$ time in 3D.

Random walk on line

- Start in location 0.
- In every step, move left with probability $1 / 2$, move right with probability $1 / 2$.

Random walk on line

\cdots	-2	-1	0	1	2	\cdots

- State (x, d), x -location, d-direction.
- At each step,
- Let $\mathrm{d}=$ left with prob. $1 / 2, \mathrm{~d}=$ right w . prob. $1 / 2$.
- (x, left) => ($x-1$, left);
- $(x$, right $)=>(x+1$, right $)$.

Quantum walk on line

\cdots	-2	-1	0	1	2	\cdots

- States $|\mathrm{x}, \mathrm{d}\rangle$, x -location, d-direction.

$$
\begin{gathered}
\text { "Coin flip": }\left\{\begin{array}{l}
\mid \text { left } \left.>\rightarrow \frac{1}{\sqrt{2}} \right\rvert\, \text { left } \left.>+\frac{1}{\sqrt{2}} \right\rvert\, \text { right }> \\
\mid \text { right } \left.>\rightarrow \frac{1}{\sqrt{2}} \right\rvert\, \text { left } \left.>-\frac{1}{\sqrt{2}} \right\rvert\, \text { right }>
\end{array}\right. \\
\text { Shift: }\left\{\begin{aligned}
\mid x, \text { left }\rangle \rightarrow \mid x-1, \text { left }\rangle \\
\mid x, \text { right }\rangle \rightarrow \mid x+1, \text { right }\rangle
\end{aligned}\right.
\end{gathered}
$$

Classical vs. quantum

Run for t steps, measure the final location.

Distance: $\Theta(\sqrt{ } \mathrm{N})$

Distance: $\Theta(\mathrm{N})$

Quantum walks on general graphs

States:
$|v\rangle|e\rangle$,
e - edge from v .

1. Unitary "coin flip" on $|e\rangle$.
2. Shift $|v\rangle|e\rangle \rightarrow|u\rangle|e\rangle$, u - other endpoint of edge e.

Element distinctness

$$
\begin{array}{|c|c|c|c|c|}
\hline 7 & 9 & 2 & \cdots & 1 \\
\hline & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \\
& & \mathrm{x}_{\mathrm{N}} \\
\hline
\end{array}
$$

- Numbers $x_{1}, x_{2}, \ldots, x_{N}$.
- Determine if two of them are equal.
- Well studied problem in classical CS.
- Classically: N questions.

Element distinctness

$$
\begin{array}{|c|c|c|c|c|}
\hline 7 & 9 & 2 & & 1 \\
\hline \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & & \mathrm{x}_{\mathrm{N}} \\
\hline
\end{array}
$$

- [Buhrman et.al., 2001]: $\mathrm{O}\left(\mathrm{N}^{3 / 4}\right)$ quantum algorithm.
- [Shi, 2002]: $\Omega\left(\mathrm{N}^{2 / 3}\right)$ quantum lower bound.
- This talk: $\mathrm{O}\left(\mathrm{N}^{2 / 3}\right)$.

Element distinctness as search on a graph

(1,2,3\}

- Vertices: $\mathrm{S} \subseteq\{1, \ldots, \mathrm{~N}\}$ of size $\mathrm{N}^{2 / 3}$ or $\mathrm{N}^{2 / 3}+1$.
- Edges: (S,T), T=S $\cup\{i\}$.
- Marked: S contains
$\mathrm{i}, \mathrm{j}, \mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{j}}$.
- In one step, we can
- Check if vertex marked; or
- Move to adjacent vertex.

Element distinctness as search on a graph

- Finding a marked vertex in M steps => element distinctness in $\mathrm{M}+\mathrm{N}^{2 / 3}$ steps.
- At the beginning, read all x_{i}
- Can check if vertex marked with 0 queries.
- Can move to neighbour with 1 query.

Quantum walk search [Shenvi, Kempe, Whaley, 2003]

- Start with a uniform superposition over all S.
- Apply one transition rule if S marked, another if S not marked.
- Quantum walk leads to a state in which marked S have higher amplitudes.

Walk on subsets

- States $|S\rangle|k\rangle \underset{i \in S}{\otimes}\left|x_{i}\right\rangle$

1."Coin flip" unitary on k .

2. $|S\rangle|k\rangle \Rightarrow|S \cup\{k\}\rangle|k\rangle$, query x_{k}.
3. "Coin flip" unitary on k.
4. $|S\rangle|k\rangle \Rightarrow|S-\{k\}\rangle|k\rangle$,
erase x_{k}.

Quantum "coin flip"

$$
\left(\begin{array}{cccc}
-1+\frac{2}{M} & \frac{2}{M} & \ldots & \frac{2}{M} \\
\frac{2}{M} & -1+\frac{2}{M} & \ldots & \frac{2}{M} \\
\ldots & \ldots & \ldots & \ldots \\
\frac{2}{M} & \frac{2}{M} & \ldots & -1+\frac{2}{M}
\end{array}\right)
$$

Restricted to $\mathrm{k} \in \mathrm{S}$ or $\mathrm{k} \notin \mathrm{S}$

Algorithm for element distinctness

- Prepare

$$
\sum_{\substack{|S|=N^{2 / 3} \\ k \notin S}}|S\rangle|k\rangle \otimes_{i \in S}\left|x_{i}\right\rangle
$$

- $\mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$ times:
- |S> \rightarrow-|S> if S contains i, j s.t. $x_{i}=x_{j}$;
- $\mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$ steps of quantum walk.

Analysis of algorithm

Assume unique i, j s.t. $x_{i}=x_{j}$.

1. Simplify analysis by symmetry.
2. Analysis of 1 quantum walk step.
3. Analysis of entire algorithm.

Symmetry

- 5 types of states $|S>| k>, k \notin S$:
- $\{i, j\} \cap S=0, k \neq i, k \neq j$.
- $\{i, j\} \cap S=0, k=i$ or $k=j$.
- $\{i, j\} \cap S=1, k \neq i, k \neq j$.
- $\{i, j\} \cap S=1, k=i$ or $k=j$.
- $\{i, j\} \cap S=2$.
- States of each type have equal amplitudes (symmetry, induction).

Symmetry

- For each of 5 types, take the uniform superposition of all |S〉|k>.
- At any time, the state of algorithm is a superposition of $\left|\Psi_{1}\right\rangle,\left|\Psi_{2}\right\rangle,\left|\Psi_{3}\right\rangle,\left|\Psi_{4}\right\rangle$, $\left|\Psi_{5}\right\rangle$.
- Suffices to analyze 5-dimensional subspace.

Analysis of quantum walk

- One step of q. walk is described by $5 * 5$ matrix.
- Find eigenvalues and eigenvectors of this matrix.

Analysis of quantum walk

- One eigenvector is a uniform superposition of all $|S>| k>, k \notin S$, with eigenvalue 1.
- The other eigenvalues are $\mathrm{e}^{\mathrm{i} \theta_{1}}, \mathrm{e}^{-i \theta_{1}}, \mathrm{e}^{\mathrm{i} \theta_{2}}$, $\mathrm{e}^{-\mathrm{i} \theta_{2}}$.

$$
\theta_{1}=\frac{C_{1}}{\sqrt{|S|}}=\frac{C_{1}}{N^{1 / 3}}, \quad \theta_{2}=\frac{C_{2}}{\sqrt{|S|}}=\frac{C_{2}}{N^{1 / 3}}
$$

$\mathrm{N}^{1 / 3}$ steps of quantum walk

- The uniform superposition of all $|S>| k>$, $k \notin S$ with eigenvalue 1 .
- The other eigenvalues are $\mathrm{e}^{\mathrm{i} \theta_{1}}, \mathrm{e}^{-i \theta_{1}}, \mathrm{e}^{\mathrm{i} \theta_{2}}$, $\mathrm{e}^{-\mathrm{i} \theta_{2}}$.

$$
\theta_{1}=C_{1}, \quad \theta_{2}=C_{2}
$$

Algorithm for element distinctness

- Prepare

$$
\sum_{\substack{|S|=N^{2 / 3} \\ k \notin S}}|S\rangle|k\rangle \otimes_{i \in S}\left|x_{i}\right\rangle
$$

- $\mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$ times:
- |S> \rightarrow-|S> if S contains i, j s.t. $x_{i}=x_{j}$;
- $\mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$ steps of quantum walk.

Analysis of entire algorithm

$$
\left.\left|\left|\psi_{\text {max }}\right\rangle=\sum_{\substack{,\langle, k \\ i, k=S}}\right| S\right\rangle|k\rangle
$$

$$
\left|\psi_{a u l}\right\rangle=\sum_{s, k}|S\rangle|k\rangle
$$

Analysis of entire algorithm

- Start in $\left|\Psi_{\text {all }}\right\rangle$. - $\mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$ times repeat:
- | $\Psi_{\text {mark }}>\rightarrow-\mid \Psi_{\text {mark }}>$.
- Rotate the subspace orthogonal to $\mid \Psi_{\text {all }}>$ by $e^{i \theta},|\theta| \geq$ const.

Lemma The final state has a constant overla with $\left|\Psi_{\text {mark }}\right\rangle$.

Main lemma

Lemma The final state has a constant overlap with $\left|\Psi_{\text {mark }}\right\rangle$.

General statement; applies to any sequence of 2 transformations.

Examples: Grover, element distinctness, other search problems?

Lemma can be used as a black box.

Handling multiple collisions

- What if multiple $\mathrm{i}, \mathrm{j}: \mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{j}}$?
- Sample part of $\mathrm{x}_{\mathrm{i}}, \mathrm{i} \in\{1,2, \ldots, \mathrm{~N}\}$ to get unique i, j : $x_{i}=x_{j}$.

Element k-distinctness

$$
\begin{array}{|c|c|c|c|c|}
\hline 7 & 9 & 2 & \cdots & 1 \\
\hline \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & & \\
& \mathrm{x}_{\mathrm{N}} \\
\hline
\end{array}
$$

- Numbers $x_{1}, x_{2}, \ldots, x_{N}$.
- Determine if there are k equal elements.
- Similar algorithm solves the problem with $\mathrm{O}\left(\mathrm{N}^{(\mathrm{k}-1) / \mathrm{k}}\right)$ queries.

Related work

- [Childs, Eisenberg, 2003, Santha 2004]: different analysis.
- [Magniez, Santha, Szegedy, 2003]: triangle finding.
- [Buhrman, Spalek, 2003]: testing matrix product.

Triangle finding [Magniez, Santha, Szegedy, 03]

- Graph G with n vertices.
- We want to know if G contains a triangle.
- $O\left(n^{2}\right)$ time classically.
- $O\left(\mathrm{n}^{1.3}\right)$ time quantum algorithm.
- Uses element distinctness as black box.

Testing matrix multiplication [Buhrman, Spalek 03]

- n *n matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
- Does $A * B=C$?
- Classically: O(n^{2}) time.
- Quantum: $O\left(n^{1.67}\right)$ time.
- Uses quantum walk on sets of columns/rows.

Grover search

$$
\begin{array}{c|c|c|c|c}
0 & 1 & 0 & \cdots & 0 \\
\hline \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & & \\
\mathrm{x}_{\mathrm{n}}
\end{array}
$$

- Find i for which $x_{i}=1$.
- Questions: ask i, get x_{i}.
- Classically, n questions.
- Quantum, $O(\sqrt{ } n)$ questions [Grover, 1996].

Quantum search on grids [Benioff, 2000]

- $\quad . V_{n} * \sqrt{n}$ grid.
- Distance between opposite corners $=2 \sqrt{ } n$.
- Grover's algorithm takes

$\sqrt{\mathbf{n}} * \sqrt{\mathbf{n}}=\mathbf{n}$
steps.
- No quantum speedup.

Quantum search on grids

- [Aaronson, A, 2003] non-quantum walk algorithm.
- $\mathrm{O}\left(\sqrt{ } \mathrm{N} \log ^{2} \mathrm{~N}\right)$ time algorithm for 2D grid.
- $\mathrm{O}(\sqrt{ } \mathrm{N})$ time algorithm for 3 and more dimensions.

Quantum search on grids

- [Childs, Goldstone, 2003]: continuoustime quantum walk.
- $O(\sqrt{ } \mathrm{~N} \log \mathrm{~N})$ time algorithm for 4D grid.
- $\mathrm{O}(\sqrt{ } \mathrm{N})$ time algorithm for 5 and more dimensions.

Quantum walks on grids

- This talk: discrete-time quantum walk.
- $O(\sqrt{ } \mathrm{~N} \log \mathrm{~N})$ time algorithm for 2D grid.
- $\mathrm{O}(\sqrt{ } \mathrm{N})$ time algorithm for 3 and more dimensions.
- Improves over [Aaronson, A].
- Shows difference between discrete and continous time quantum walks.

Quantum walk on grid

Basis states $|\mathrm{x}, \mathrm{y}, \leftarrow>| \mathrm{x}, \mathrm{y},, \rightarrow\rangle, \mid \mathrm{x}, \mathrm{y}, \uparrow>$, $\mid x, y, \downarrow>$.

- Coin flip on direction:

$$
\left(\begin{array}{cccc}
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

Quantum walk on grid

- Shift:
- $|x, y, \leftarrow\rangle \quad \Rightarrow \quad \mid x-1, y, \rightarrow>$
- |x, $\mathrm{y}, \rightarrow\rangle \quad \Rightarrow \quad|\mathrm{x}+1, \mathrm{y}, \leftarrow\rangle$
- |x, y, 个> $\Rightarrow \quad|x, y-1, \downarrow\rangle$
$-|x, y, \downarrow\rangle \quad \Rightarrow \quad|x, y+1, \uparrow\rangle$

Search by quantum walk

- Perform a quantum walk with different "coin flip" transformation in marked locations.
- After $O(\sqrt{N \log N})$ steps, measure the state.
- Gives marked $\mid x, y, d>$ with prob. $1 / \log N$.
- In 3 and more dimensions, $\mathrm{O}(\sqrt{ } \mathrm{N})$ steps, constant probability.

Discrete time quantum walks

- State $|x, y>| d>$, with (x, y) being location, $d-$ direction $(\leftarrow, \uparrow, \rightarrow, \downarrow)$.
- "Coin flip" on |d>;
- Modify |x, y> dependant on |d>.
- Many possible transformations for "coin flip", with different results.

Different quantum walk

- Same coin flip

$$
\left(\begin{array}{cccc}
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

- Different shift

$$
\begin{aligned}
& |x, y, \uparrow\rangle \rightarrow|x-1, y, \uparrow\rangle \\
& |x, y, \downarrow\rangle \rightarrow|x+1, y, \downarrow\rangle \\
& |x, y, \leftarrow\rangle \rightarrow|x, y-1, \leftarrow\rangle \\
& |x, y, \rightarrow\rangle \rightarrow|x, y+1, \rightarrow\rangle
\end{aligned}
$$

Different coin flip for marked locations

Different quantum walk

- Claim The probability of being in marked location never exceeds $2 / \mathrm{N}$.

Application: set disjointness

- Alice has set $\mathrm{A} \subseteq\{1,2, \ldots, \mathrm{~N}\}$, Bob has $B \subseteq\{1,2, \ldots, N\}$.
- They want to know if there is $i: i \in A, i \in B$.
- How many qubits of communication?
- [Buhrman et.al., 97]: $O(\sqrt{ } N \log N)$.
- [Hoyer, de Wolf 02]: O($\left.\sqrt{ } \mathrm{N} \mathrm{c}^{\log * N}\right)$.
- [Razborov 02]: $\Omega(\sqrt{ } \mathrm{N})$.
- [Aaronson, A, 03]: O($\sqrt{ } \mathrm{N})$.

Set disjointness

- Cube of volume N .
- Divide in N subcubes.
- Alice writes 1 in $\mathrm{i}^{\text {th }}$ subcube if $\mathrm{i} \in \mathrm{A}$.
- Bob writes 1 in $\mathrm{i}^{\text {th }}$ subcube if $\mathbf{i} \in B$.

Set disjointness

- Is there a location where both Alice and Bob have 1?
- Alice and Bob run $O(\sqrt{ } \mathrm{~N})$ algorithm for 3D search.
- Each step - 5 qubit communication.

More information

- Element distinctness - A, quantph/0311001.
- Search on grid - A, Kempe, Rivosh, Shenvi, coming soon.

Open problems

- What is the complexity of finding if there are k equal items $\mathrm{x}_{\mathrm{i} 1}=\ldots=\mathrm{x}_{\mathrm{ik}}$?
- Algorithm: $\mathrm{O}\left(\mathrm{N}^{(k-1) / k}\right)$.
- Lower bound: $\Omega\left(\mathrm{N}^{2 / 3}\right)$.

Open problems

- Our element distinctness algorithm uses $\mathrm{O}\left(\mathrm{N}^{2 / 3}\right)$ space.
- Algorithm with less space?
- Space restricted to M items:
- Quantum: $O(N / \sqrt{ } \mathrm{M})$ queries.
- Classical: $\mathrm{O}\left(\mathrm{N}^{2} / \mathrm{M}\right)$ queries.
- Quantum speeds up time but not space.
- Quantum lower bounds on space?

Open problems

- On 2-D grid, why one coin succeeds and the other fails? Any correspondence to physics?
- How to handle multiple marked states in quantum walk algorithms?
- Can we speed up classical Markov chain algorithms (approximating permanent)?

