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i Today's talk

= New technique for quantum algorithms.

= Quantum walks (g. counterparts of
random walks).

s Element distinctness.
s Spatial search.




Element distinctness
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= Determine if x4, X5, ..., Xy contains two
equal numbers.

= Classically: N questions.
= Quantum: O(N%3),



i Spatial search
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= N items on YN*VN grid.
= Some items marked.

= Find marked item.

= Grover: Q(N).

= O(\N log N) time in 2D.
= O(+N) time in 3D.



i Random walk on line
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s Start in location 0.

= In every step, move left with probability
/2, move right with probability /.



i Random walk on line
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= State (X, d), x —location, d-direction.

= At each step,
= Let d=left with prob. V2, d=right w. prob. 2.
= (X, left) => (x-1, left);
= (X, right) => (x+1, right).



i Quantum walk on line
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= States |x, d), x —location, d-direction.

“Coin flip”:

Shift:
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i Classical vs. quantum

Run for t steps, measure the final location.

Distance: ®@(VN) Distance: O(N)



Quantum walks on general

i graphs
® o ! Unitary “coin flip” on

le).
2. Shift
O O

v)le) = |u) |e),

States: u — other endpoint
‘ % >‘ e >, of edge e.

e- edge from v.




i Element distinctness
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s Numbers Xy, X5, ..., Xy,

= Determine if two of them are equal.
= Well studied problem in classical CS.
= Classically: N questions.



Element distinctness
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= [Buhrman et.al., 2001]: O(N3/%) quantum
algorithm.

= [Shi, 2002]: Q2(N%3) quantum lower bound.

= This talk: O(N%/3).




Element distinctness as search
i on a graph
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= Vertices: S={1, ..., N} of
(1,2,3v  size N¥3or N%/3+1.
= Edges: (5,T), T=S{i}.
= Marked: S contains
, 1,X=X;,
= In one step, we can

= Check if vertex marked; or
N2/3 N2/3+1 = Move to adjacent vertex.

L3}
{1,2,4}
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Element distinctness as search
i on a graph

(1.2} = Finding a marked vertex in
1,23, M steps => element
(131 distinctness in M+N?/3 steps.

(2,41 " At the beginning, read all x;

= Can check if vertex marked
with O queries.

= Can move to neighbour with
1 query.
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Quantum walk search [Shenvi,
i Kempe, Whaley, 2003]

= Start with a uniform superposition over
all S.

= Apply one transition rule if S marked,
another if S not marked.

= Quantum walk leads to a state in which
marked S have higher amplitudes.




‘LWaIk on subsets

= States |S)k) ®

ieS

X,)

1."Coin flip” unitary on k.

2. |S) [k) = [Su{k}) [K),
query X,.

3. "Coin flip” unitary on k.

4. 1S) |k = [S-{k}) |K),
erase X,.
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Restricted to keS or kgS



Algorithm for element
i distinctness

= Prepare
2, |5)[k) @

S|=N7"7,
keS

= O(N1/3) times:
= [S> — -|S> if S contains i, j s.t. X; = X;;
= O (N1/3) steps of quantum walk.

X,)



i Analysis of algorithm

Assume unique |, J s.t. X; =X;.

1. Simplify analysis by symmetry.
2. Analysis of 1 quantum walk step.
3. Analysis of entire algorithm.




i Symmetry

= 5 types of states |S>|k>, k ¢ S:
= {i, J}nS=0, k=i, k#j.
= {i, j}nS=0, k=i or k=j.

« {i, J}nS=1, k=i, k#j.
= {i, j}nS=1, k=i or k=j.
= {i, J}NS=2.

= States of each type have equal

amplitudes (symmetry, induction).




i Symmetry

= For each of 5 types, take the uniform
superposition of all |S)|k).

= At any time, the state of algorithm is a
superposition of |¥y), |V, [¥3), ['Ps),
|'s).

= Suffices to analyze 5-dimensional
subspace.



i Analysis of quantum walk

= One step of g. walk is described by 5*5
matrix.

= Find eigenvalues and eigenvectors of
this matrix.



i Analysis of quantum walk

= One eigenvector is a uniform
superposition of all |[S>|k>, k ¢ S, with
eigenvalue 1.

= The other eigenvalues are e, e, el%,
e-ie2 _
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i N1/3 steps of quantum walk

= The uniform superposition of all |S>|k>,
k ¢ S with eigenvalue 1.

= The other eigenvalues are e€®:;, e, e,
e-i@2 _
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Algorithm for element
i distinctness

= Prepare
2, |5)[k) @

S|=N7"7,
keS

= O(N1/3) times:
= [S> — -|S> if S contains i, j s.t. X; = X;;
= O (N1/3) steps of quantum walk.

X,)



i Analysis of entire algorithm
A ‘Wmark>:SZk; ‘S>‘k>

‘Wazz>:SZk:‘S>‘k>
/ |




i Analysis of entire algorithm

= O(N1/3) times repeat:
o |War™ = = [Whan>
| Y™ = Rotate the subspace

/ orthogonal to |\Y,,> by

el®, |0|>const.

A | \Pmark>

Lemma The final state has a constant overlaj
with [V, ..>-




i Main lemma

Lemma The final state has a constant overlap
with |V, ..>-

General statement; applies to any sequence of 2
transformations.

Examples: Grover, element distinctness,
other search problems?

Lemma can be used as a black box.



i Handling multiple collisions

= What if multiple i, j: x; = x;?
= Sample part of x;, ie{1, 2, ..., N} to get
unique i, J: X; = X;.



i Element k-distinctness
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s Numbers Xy, X5, ..., Xy,
= Determine if there are k equal elements.

= Similar algorithm solves the problem with
O(N-1/K) queries.



i Related work

= [Childs, Eisenberg, 2003, Santha 2004]:
different analysis.

= [Magniez, Santha, Szegedy, 2003]:
triangle finding.

= [Buhrman, Spalek, 2003]: testing matrix
product.



Triangle finding [Magniez,
Santha, Szegedy, 03]

= Graph G with n vertices.

= We want to know if G contains a
triangle.

= O(n?) time classically.
= O(n!-3) time quantum algorithm.
s Uses element distinctness as black box.



Testing matrix multiplication
Buhrman, Spalek 03]

= N*n matrices A, B, C.

= Does A*B=C?

s Classically: O(n?) time.
= Quantum: O(n!®”) time.

= Uses quantum walk on sets of
columns/rows.




i Grover search
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= Find i for which x=1.
= Questions: ask i, get x.
= Classically, n questions.

= Quantum, O(~/n) questions [Grovetr,
1996].



Quantum search on grids
i [Benioff, 2000]

@ = \/n* \/n grld
~© = Distance between
© opposite corners = 2+n.

= Grover’s algorithm takes
©  Jnx/n=n

steps.

= No quantum speedup.
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i Quantum search on grids

= [Aaronson, A, 2003] non-quantum walk
algorithm.

= O(YN log? N) time algorithm for 2D grid.

= O(VN) time algorithm for 3 and more
dimensions.



i Quantum search on grids

= [Childs, Goldstone, 2003]: continuous-
time quantum walk.

= O(YN log N) time algorithm for 4D grid.

= O(YN) time algorithm for 5 and more
dimensions.



i Quantum walks on grids

= This talk: discrete-time quantum walk.
= O(+N log N) time algorithm for 2D grid.

= O(VN) time algorithm for 3 and more
dimensions.

= Improves over [Aaronson, A].

s Shows difference between discrete and
continous time quantum walks.



iQuantum walk on grid

= Basis states |x,y,<>, |x, ¥y, =>>, |x, vy, T>,
X, Y, ¥>.

= Coin flip on direction:

I
2 2 2 2
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2 2 2 2
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iQuantum walk on grid

X, Y, <>
X, Y, —>
X, y, T>
X, Y, v>

J 4 Uy

x-1,y, >>
xt+1,y, <>
X, y-1, 1>

X, y+1, T™>



i Search by quantum walk

= Perform a quantum walk with different “coin
flip” transformation in marked locations.

= After O(\/N log N )steps, measure the state.
= Gives marked |x, y, d> with prob. 1/log N.

= In 3 and more dimensions, O(YN) steps,
constant probability.




i Discrete time quantum walks

= State |x, y>|d>, with (X, y) being
location, d — direction («, T, —, 1).
=« "Coin flip” on |d>;
=« Modify |X, y> dependant on |d>.

= Many possible transformations for “coin
flip”, with different results.



i Different quantum walk

= Same coin flip =« Different shift
L 1 I XIYIT> — |X-1IYIT>
coh 1T X, ¥, ¥) = |x+1,y, })
% 12 21 % X, Y, < > — |XI y-ll (_>
2 2 2 2 X, ¥, =)= X, y+1, =)
rr 1 1
2 2 2 2

Different coin flip for marked locations



i Different quantum walk

= Claim The probability of being in
marked location never exceeds 2/N.




i Application: set disjointness

= Alice has set Ac{1, 2, ..., N}, Bob has

BAL1, 2, ..., N}

= They want to know if there is i: i€A, ieB.
= How many qubits of communication?

‘Buhrman et.al., 97]: O(v¥N log N).
‘Hoyer, de Wolf 02]: O(VN clog*N),
'Razborov 02]: Q(VN).

‘Aaronson, A, 03]: O(\N).



*Set disjointness

= Cube of volume N.
= Dividein N
subcubes.

= Alice writes 1 in it
subcube if ieA.

= Bob writes 1 in ith
d subcube if ieB.

DNERANEANEAN

PNERANEANEAN
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* Set disjointness

s Is there a location
where both Alice
and Bob have 17

= Alice and Bob run
O(~N) algorithm for
3D search.

/ = Each step - 5 qubit
communication.

DNERANEANEAN

PNERANEANEAN
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i More information

= Element distinctness — A, quant-
ph/0311001.

= Search on grid — A, Kempe, Rivosh,
Shenvi, coming soon.



i Open problems

= What is the complexity of finding if
there are k equal items x; = ... = X; ?

= Algorithm: O(Nk-1/K),
= Lower bound: Q(N%3).




i Open problems

= Our element distinctness algorithm uses
O(N%/3) space.
= Algorithm with less space?

= Space restricted to M items:
= Quantum: O(N/ VM) queries.
= Classical: O(N%/M) queries.

= Quantum speeds up time but not space.
= Quantum lower bounds on space?




i Open problems

= On 2-D grid, why one coin succeeds
and the other fails? Any correspondence
to physics?

= How to handle multiple marked states
in quantum walk algorithms?

= Can we speed up classical Markov chain
algorithms (approximating permanent)?



